Home Posts tagged "Mobility" (Page 8)

Five Resistance Training Myths in the Running World

To some, resistance training is the Rodney Dangerfield of the running community; it gets no respect. To others, it’s like Tom Cruise; runners think it might be useful, but it just doesn’t make any sense to them. And then, there are those to whom resistance training is like Abraham Lincoln; it’s freed them from being slaves to ineffective programming.

As a performance enhancement specialist who has a lot of “Abe” endurance athletes under my tutelage, I’d like to take this opportunity to bring the Rodney and Tom runners in the crowd up to speed. With that in mind, let’s look at the five most prominent myths present in the running community with respect to resistance training.

Now, I know what you’re thinking: this Cressey guy is just another meathead who doesn’t run telling me what to do. We’ve had lots of pigheaded guys like this over the years, and none of them understood us. They were all like this guy.

Myth #1: Runners don’t need to resistance train.

I figured I’d start with the most obvious of the bunch. I had been under the impression that – now that we’ve done a ton of resistance training research over the past 20 years – that this wasn’t still a myth at all. Then, just last month, one of my marathoner clients brought in a copy of a popular running magazine; it included a “debate” that featured two experts arguing over whether or not runners needed to lift weights.

Huh?

This is what some people within the running community have taken from over two decades of dedicated resistance training research from some of the most brilliant scientists in the world? I thought back to the hundreds of hours I’d spent working in the human performance laboratory at the University of Connecticut as I worked for my master’s degree; time and time again, our research had proven unequivocally that resistance training was important for making and keeping people healthy, strong, fast, and lean. Had all our efforts been in vain? At that moment, if someone had told me that the Easter Bunny isn’t real, I might have lost it altogether.

Just to recap: we know resistance training is good for general health, as it:

1. Enhances endocrine and immune function (which are compromised by endurance training)
2. Maintains muscle mass (also negatively affected by endurance training)
3. Improves functional capacity in spite of aging by maintaining maximal strength and power (both of which decrease with prolonged endurance training)
4. Builds bone density (something many runners lack due to poor dietary practices, but desperately need in light of the high risk of stress fractures)
5. Enables us to more rapidly correct muscle imbalances, as evidenced by the fact that resistance training is the cornerstone of any good physical therapy program (and I’ve never met a runner without imbalances)

So, I think that the answer is somewhat clear. It’s quite obvious that runners are a superhuman race that is not subject to the normal laws of physiology like the rest of us.

In case you’re not picking up on my sarcasm, please go splash some cold water on your face and knock back a bit of Gatorade to get some glucose to your brain. Then, reread those five points from above (which are just the tip of the iceberg, for the record). Ask yourself:

1. Do I have an endocrine system?
2. Do I have an immune system?
3. Will I get old? Do I do things that require strength and power?
4. Do I have bones?
5. Do I have muscle imbalances?

If you answered “no” to any of these questions, I would seriously recommend that you consult a psychologist instead of a running coach, as you’re obviously dealing with a serious case of denial.

Runners are just like the rest of us. You may wear shorter shorts, but you still put them on one leg at a time. You need resistance training.

And, if the general health benefits aren’t enough, consider these research findings:

-A University of Alabama meta-analysis of the endurance training scientific literature revealed that 10 weeks of resistance training in trained distance runners improves running economy by 8-10% (1). For the mathematicians in the crowd, that’s about 20-24 minutes off a four-hour marathon – and likely more if you’re not a well-trained endurance athlete in the first place.

runners-760431_960_720

-French researchers found that the addition of two weight-training sessions per week for 14 weeks significantly increased maximal strength and running economy while maintaining peak power in triathletes. Meanwhile, the control group – which only did endurance training – gained no maximal strength or running economy, and their peak power actually decreased (who do you think would win that all-out sprint at the finish line?). And, interestingly, the combined endurance with resistance training group saw greater increases in VO2max over the course of the intervention (2).

-Scientists at the Research Institute for Olympic Sports at the University of Jyvaskyla in Finland found that replacing 32% of regular endurance training volume with explosive resistance training for nine weeks improved 5km times, running economy, VO2max, maximal 20m speed, and performance on a 5-jump test. With the exception of VO2max, none of these measures improved in the control group that just did endurance training (3). How do you think they felt knowing that a good 1/3 of their entire training volume was largely unnecessary, and would have been better spent on other initiatives?

-University of Illinois researchers found that addition of three resistance training sessions for ten weeks improved short-term endurance performance by 11% and 13% during cycling and running, respectively. Additionally, the researchers noted that “long-term cycling to exhaustion at 80% VO2max increased from 71 to 85 min after the addition of strength training” (4)

The take-home message is that running is more than just VO2max, anaerobic threshold, and a good pair of sneakers; it’s also about localized muscular endurance and nervous system efficiency. And, you can’t have strength endurance unless you’ve got strength. Build a solid foundation and you’ll be a complete runner.

Myth #2: Machines are just as good as free weights.

Next time you’re running, I want you to ask yourself how many times you’ve been seated and moving in a fixed plane of motion while you run. If the answer isn’t a resounding “NEVER,” then you probably ought to get your head examined.

Resistance training isn’t just about “feeling the burn” in your muscles; it’s about grooving connections between the muscles and the nervous system that tells them what to do. When you plop down on a machine and work through a fixed line of motion, you’re allowing your nervous system to get lazy, so to speak; it doesn’t have to recruit any stabilizing muscles to ensure that you move efficiently. Machines turn you into a “motor moron” and ingrain muscle imbalances that can negatively affect your running efficiency and lead to injury. Let’s take a look at an example to illustrate my point.

When you do a dumbbell lunge, your body has to generate force in single-leg stance – and in order to generate force optimally, you need to have what is called “frontal plane stability.” With the lunge, this refers predominantly to the ability of the adductors (inner thigh muscles) and abductors (outer thigh/butt muscles) to co-contract, working together stabilize your thigh so that you don’t tip over. By doing a lung correctly, we can teach these muscles to balance each other out properly, and in doing so, improve running efficiency and prevent problems such as lateral knee pain, anterior hip pain, and lower back pain (just to name a few).

A look at the status quo, however, shows that most women will try to train their adductors a
nd abductors with those inner and outer thigh machines that you’d only expect to see on a trip to the obstetrician. Unfortunately, the adductors and abductors NEVER work in isolation like this, and they never work in a fixed line of motion. The adductors and abductors don’t just move the thighs in and out; they also have subtle effects on rotation of the femur, so when we’re “stuck” into one plane of motion, we promote dysfunction.

Factor in that the lunge also trains the hamstrings, glutes, quadriceps, and core stabilizers extensively at the same time, and you’ll realize that it isn’t only safer than these machines; it’s also offers more bang for your buck. Why do five different exercises when you can get even better results with just one?

runner-864861__340

Myth #3: Yoga and Pilates “count” as resistance training.

This was another great information tidbit a client brought in after a conversation with an endurance training coach who is actually quite popular locally. I have to say that I was really surprised when I heard:

“He said that we need to resistance train, but it didn’t matter if we used free weights, used machines, or took yoga or Pilates classes.”

After I finished choking on the gum I was chewing, I explained the concept of progressive overload to my client.

When we resistance train, it’s important that we – over time – gradually increase the load that is imposed on our system; otherwise, our body doesn’t really have any reason to adapt in a manner that will be favorable to use getting stronger, faster, or leaner.

Now, how do we make a class that is body weight-only harder? I’ve never seen anyone wear a weighted vest to yoga class, so – as Mike Boyle has pointed out – gaining weight is your only option. After all, the most overweight people always sweat the most during yoga, right?

Obviously, I’m being facetious – but I’m proud to say that it’s with good reason (although I’ll probably never date a yoga or Pilates instructor after this article). When you lift with free weights, you always have the option to provide progressive overload to your system; there is no “ceiling” effect when you get proficient handling your body weight.


Myth #4: Super-slow training is valuable.

About a year ago, I had a phone conversation with a noted triathlete coach who had previously worked with one of my clients, Jon (who completed his first Ironman this past July). When I took over Jon’s training, he was a mediocre endurance athlete with a VO2max of 50.6 ml/kg/min., with anaerobic threshold occurring at 60% of VO2max (laboratory test). After six months of training with me, Jon’s VO2max had improved to 73.1 ml/kg/min, and his anaerobic threshold didn’t occur until an impressive 80% (anaerobic threshold is now generally believed to be the best predictor of endurance performance; the higher the percentage, the better). It’s also important to note that during this time, Jon’s max heart rate remained constant; normally, it decreases when an endurance athlete does a lot of longer duration steady-state training. When this coach got wind of the results, he just had to know how the heck we had gotten such staggering results. My response was essentially:

“We got him to go faster instead of longer, incorporating more threshold runs and sprint work. And, probably more importantly, I told him he had to stop lifting like a sissy. He got a lot stronger and more explosive on compound free-weight movements, and it clearly made a big difference.”

His response: “Wait, you mean you don’t use super-slow training? Free weights are dangerous! Endurance athletes aren’t conditioned to handle high-speeds and heavy lifting!”

I had to cover the mouthpiece on the phone because I was laughing out loud. For the next ten minutes, I explained to this coach that the last time I checked, the most successful endurance athletes I’ve known are the ones who go the fastest for a set distance – not the ones who can run the longest. Anybody can go forever; just look at the people who jog at a snail’s pace for years and years and never look or perform any differently. Jon got out of his comfort zone by moving faster, desensitizing himself to zones above his normal race pace, and – perhaps most importantly – by taking his training serious with heavy and explosive resistance training. Super-slow training has no place in this picture.

In layman’s terms, if you train an athlete slowly, that athlete will be slow in competition; specificity of training is more important than we think. If you want to run a marathon, you don’t do all your training on a cycle, do you? Of course not! It wouldn’t be specific for you!

runner-690265_960_720

In scientific jargon, super-slow training doesn’t work due to a phenomenon called “asynchronous recruitment.” We all have slow twitch and fast twitch muscle fibers, and it’s to our advantage to activate as many of them as possible when we resistance train in order to truly reap the benefits that our nervous system and muscles can offer. As you may already know, slow twitch fibers are always recruited first; your body won’t also call upon the fast twitch fibers in your muscles unless it really needs help with a challenging task – like the last few reps on a set of five squats. Once we’re a bit experienced with resistance training, in order to recruit fast twitch fibers (which can actually be converted to slow twitch fibers to enhance endurance performance), we need to train with at least 70% of our maximal strength on a particular exercise in order to build strength with classic “repetition work.” The more experienced one gets, the higher this percentage goes; really experienced lifters won’t get stronger below 85-90%, in fact.

With super-slow, we’re stuck with a protocol that forces us to use less weights because we have to do a lot of reps – and at a very slow tempo. This load falls short of the crucial 70% mark – and definitely far short of the 85-90% mark. And, believe it or not, we don’t even getting all our slow twitch fibers contributing! Instead, through asynchronous recruitment, certain fibers simply “turn on” and “turn off” during the set; the weight is so light that they can actually take breaks while their “helpers” pick up the slack in the meantime. I’m not making this stuff up!

Don’t forget that super-slow is traditionally performed on machines, too, and we already know that machines are about as useful to an athlete as a screen door would be for a submarine.

Myth #5: Runners should avoid heavy weights and dynamic lifts.

Once we get endurance athletes lifting weights, we always have to deal with the contention that because they’re endurance athletes, they should only do higher-rep sets because they just need to train muscular endurance. Originally, that works fine, as you’re really just learning the exercises and conditioning the tissues for what is ahead. Unfortunately, as the athlete gets more experienced with resistance training, it becomes readily apparent that not all reps are created equal.

There are three ways that we can develop tension in our muscles (basically the goal of any resistance training exercise):

1. The Repetition Method – This is the classic approach most gym-goers use. Do a bunch of reps, and as you fatigue, the muscle tension accumulates; the last few reps are what make the big difference.

2. The Maximal Effort Method – This is an approach where the load utilized is heavier, so the tension is “automatically” applied to the muscles. You just have to work against it. This method – which uses rep ranges of 1-6 – is great for building muscular strength and teaching your nervous system to recruit more muscle fibers.

3. The Dynamic Effort Method – This approach uses non-maximal loads, but
the focus is on lifting the weight as fast as possible. Jump squats are a good example of dynamic effort training, which teaches the nervous system to recruit muscles faster. Additionally, some dynamic effort training can teach your tendons to store more elastic energy (like plyometrics). If your tendons work more efficiently, your running style is more relaxed, reflexive, and “springy,” as you don’t have to “muscle” every stride.

With all this said, it should become clear that you can’t pursue the maximal or dynamic effort methods with sets of 12-15; you have to use different rep ranges and loading parameters if you want a truly effective resistance training program.

Frequently Asked Questions

Q: Won’t I gain body fat if I cut back my running volume and replace it with resistance training?

A: No! Contrary to popular belief, resistance training is extremely valuable for burning fat – primarily due to something known as “Excess Post-Exercise Oxygen Consumption” (EPOC). This is just a fancy way of saying that after any exercise session, our metabolisms are elevated significantly. Research has shown that EPOC directly related to how intense our exercise sessions are; the more intense the effort, the more metabolic “debt” we accumulate. For this reason, activities like sprinting and weight-training – both of which are much more intense than steady-state jogging – have a ton of merit in “battling the bulge.” Amazingly, a single bout of resistance training can elevate the metabolism for more than 48 hours – and favorably affect endocrine and immune status in a manner that is conducive to fat loss. If you want to be lean, you have to lift weights!

Additionally, you rarely see ultra-endurance athletes with very low body fat percentages – and it’s largely because all the mileage they do leads to higher levels of cortisol and lower levels of testosterone in the body. This endocrine fluctuation leads to a loss of muscle mass (which burns a lot of calories) and an increased tendency to store body fat. Fortunately, resistance training has been shown to have favorable effect on testosterone levels chronically (good for men and women…trust me). By keeping your hormonal status in check by including some resistance training, runners can get faster and leaner!

Q: I have limited time to train; wouldn’t I be better off just running if time is limited?

A: Obviously, this would depend on how you define “limited” – but it’s been my experience that runners can always “make” time to run, but will only “try to find” time to resistance-train. Generally speaking, you can bang out a run here and there without much time preparation, so it’s best to schedule your 2-3 resistance training sessions ahead of time. Additionally, in some cases, you can incorporate some body weight resistance training exercises as part of your warm-up – but this certainly won’t cover all your needs.

runner-579328_960_720

Also, don’t forget the study I cited earlier about the group of endurance athletes who saw appreciable gains in performance by replacing 32% of their running volume with resistance training. If you run six days a week, try moving to four runs and two lifting sessions – and watch your times improve dramatically.

Anyway, my feeling is that from a body composition, health, and performance standpoint, you need to make time for two lifting sessions per week regardless of how much you run.

Q: Won’t resistance training will interfere with my running?

A: Great question – and the answer is no, provided you schedule your running sessions appropriately. Ideally, you would lift on days that you don’t run, or pair your lifts up with your tempo (sprint) sessions in order to “consolidate” your most intense training and allow for better recovery.

There is some research to show that running efficiency is impaired slightly for up to eight hours post-exercise, but you should be fine if you lift and run on separate days. I always prefer that my athletes lift before they run, though; you always want to do your speed and power work before you move on to endurance training.

Q: Won’t resistance training make my muscles bigger? I don’t want all that weight holding me down!

A: Endurance training by its very nature is not conducive to muscle growth (especially in a female population with lower testosterone levels). The sheer volume of exercise makes it difficult to get in enough calories to support muscle mass gains, so the effects of resistance training are largely confined to muscle density (tone), strength, and overall efficiency rather than actual increases in muscle size. If it was so easy to get “bulky,” there would be a lot more bulky people walking around!

Closing Thoughts

All this information won’t be of any use if it isn’t put into action, so now is the time to either modify how you’re lifting, or start lifting in the first place. At the very least, you need to complement your endurance training with two resistance-training sessions per week – and preferably three.

Just as running is more fun with a partner, so is lifting, so find a few buddies to hit the gym with you. In our facility, time and time again, we’ve seen athletes make much better progress when they’re training in small groups and pushing each other to get better. Plus, for those of you who might be a bit intimidated at the thought of joining a gym, some training partners can do a lot to ease your worries.

At your fingertips, you have an opportunity to dramatically improve performance, overall health, and the way your body looks and feels. There’s no time like the present to turn that opportunity into a reality.

References
1. Jung AP. The impact of resistance training on distance running performance. Sports Med. 2003;33(7):539-52.
2. Millet, GP, Jaouen, B, Borrani, F, Candau, R. Effects of concurrent endurance and strength training on running economy and .VO(2) kinetics. Med Sci Sports Exerc. 2002 Aug;34(8):1351-9.
3. Paavolainen, L, Hakkinen, K, Hamalainen, I, Nummela, A, Ruski, H. Explosive-strength training improves 5-km running time by improving running economy and muscle power. J Appl Physiol. 1999 May;86(5):1527-33.
4. Hickson, R. C., B. A. Dvorak, E. M. Gorostiaga, T. T. Kurowski, and C. Foster. Potential for strength and endurance training to amplify endurance performance. J. Appl. Physiol. 65: 2285-2290, 1988.

Read more

SI Joint Relief

Eric, My SI joint have given me major problems for the last 3-4months. I have received some fairly effective treatment from my Chiro but need to get some tips on corrective exercise. I own your Magnificent Mobility DVD. What movements should I avoid/focus on?
Try this: Foam Rolling, then X-band Walks Supine Bridges Birddogs Warrior Lunge Stretch Static - 15s/side IT Band Stretch Static - 15s/side Calf Mobilizations High Knee Walks Pull-Back Butt Kicks Cradle Walks Overhead Lunge Walk Walking Spidermans Scap Pushups There are a lot more I'd use with you, but these are the ones on the DVD. Stay away from anything that involved twisting/rotation.
As far as rehab is concerned I understand i have to: Go for walks. Activation work for abs/glutes. Improve length/tension relationship of hip related musculature. Strengthen multifidi ETC
Etc? Yikes. Don't worry about isolating multifidi; you can't do it. I would recommend you do the following daily: Side bridges Supine bridges Birddogs Avoid Crunches. Start with Isometrics for abs/lower back and slowly progress and avoid hyperextension at all costs.
With regards to weight training I am thinking: Now machine work. Leg ext/curls/GHR light front squats. => BW one legged movements Dynamic Sumo deads Oly squats power squats Any tips for me?
A lot of single-leg movements, and glute-emphasis pull-throughs are good. Can't really say much about squats and deadlifts without seeing your form. Eric Cressey 10 Minutes to Better Flexibility, Performance, and Health
Read more

Fixing the Flaws: Weak Posterior Chain

Big, fluffy bodybuilder quads might be all well and good if you're into getting all oiled up and "competing" in posing trunks, but the fact of the matter is that the quadriceps take a back seat to the posterior chain (hip and lumbar extensors) when it comes to athletic performance. Compared to the quads, the glutes and hamstrings are more powerful muscles with a higher proportion of fast-twitch fibers. Nonetheless, I'm constantly amazed at how many coaches and athletes fail to tap into this strength and power potential; they seem perfectly content with just banging away with quad-dominant squats, all the while reinforcing muscular imbalances at both the knee and hip joints. The muscles of the posterior chain are not only capable of significantly improving an athlete's performance, but also of decelerating knee and hip flexion. You mustn't look any further than a coaches' athletes' history of hamstring and hip flexor strains, non-contact knee injuries, and chronic lower back pain to recognize that he probably doesn't appreciate the value of posterior chain training. Or, he may appreciate it, but have no idea how to integrate it optimally. The best remedies for this problem are deadlift variations, Olympic lifts, good mornings, glute-ham raises, pull-throughs, back extensions, and hip-dominant lunges and step-ups. Some quad work is still important, as these muscles aren't completely "all show and no go," but considering most athletes are quad-dominant in the first place, you can usually devote at least 75% of your lower body training to the aforementioned exercises (including Olympic lifts and single-leg work, which have appreciable overlap). Regarding the optimal integration of posterior chain work, I'm referring to the fact that many athletes have altered firing patterns within the posterior chain due to lower crossed syndrome. In this scenario, the hip flexors are overactive and therefore reciprocally inhibit the gluteus maximus. Without contribution of the gluteus maximus to hip extension, the hamstrings and lumbar erector spinae muscles must work overtime (synergistic dominance). There is marked anterior tilt of the pelvis and an accentuated lordotic curve at the lumbar spine. Moreover, the rectus abdominus is inhibited by the overactive erector spinae. With the gluteus maximus and rectus abdominus both at a mechanical disadvantage, one cannot optimally posteriorly tilt the pelvis (important to the completion of hip extension), so there is lumbar extension to compensate for a lack of complete hip extension. You can see this quite commonly in those who hit sticking points in their deadlifts at lockout and simply lean back to lock out the weight instead of pushing the hips forward simultaneously. Rather than firing in the order hams-glutes- contralateral erectors-ipsilateral erectors, athletes will simply jump right over the glutes in cases of lower crossed syndrome. Corrective strategies should focus on glute activation, rectus abdominus strengthening, and flexibility work for the hip flexors, hamstrings, and adductors. Eric Cressey www.BuildingtheEfficientAthlete.com
Read more

Fixing the Flaws: Weak Rotator Cuff / Scapular Stabilizers

I group these two together simply because they are intimately related in terms of shoulder health and performance. Although each of the four muscles of the rotator cuff contributes to humeral motion, their primary function is stabilization of the humeral head in the glenoid fossa of the scapula during this humeral motion. Ligaments provide the static restraints to excessive movement, while the rotator cuff provides the dynamic restraint. It's important to note, however, that even if your rotator cuff is completely healthy and functioning optimally, you may experience scapular dyskinesis, shoulder, upper back, and neck problems because of inadequate strength and poor tonus of the muscles that stabilize the scapula. After all, how can the rotator cuff be effective at stabilizing the humeral head when its foundation (the scapula) isn't stable itself? Therefore, if you're looking to eliminate weak links at the shoulder girdle, your best bet is to perform both rotator cuff and scapular stabilizer specific work. In my experience, the ideal means of ensuring long-term rotator cuff health is to incorporate two external rotation movements per week to strengthen the infraspinatus and teres minor (and the posterior deltoid, another external rotator that isn't a part of the rotator cuff). On one movement, the humerus should be abducted (e.g. elbow supported DB external rotations, Cuban presses) and on the other, the humerus should be adducted (e.g. low pulley external rotations, side-lying external rotations). Granted, these movements are quite basic, but they'll do the job if injury prevention is all you seek. Then again, I like to integrate the movements into more complex schemes (some of which are based on PNF patterns) to keep things interesting and get a little more sport-specific by involving more of the kinetic chain (i.e. leg, hip, and trunk movement). On this front, reverse cable crossovers (single-arm, usually) and dumbbell swings are good choices. Lastly, for some individuals, direct internal rotation training for the subscapularis is warranted, as it's a commonly injured muscle in bench press fanatics. Over time, the subscapularis will often become dormant – and therefore less effective as a stabilizer of the humeral head - due to all the abuse it takes. For the scapular stabilizers, most individuals fall into the classic anteriorly tilted, winged scapulae posture (hunchback); this is commonly seen with the rounded shoulders that result from having tight internal rotators and weak external rotators. To correct the hunchback look, you need to do extra work for the scapular retractors and depressors; good choices include horizontal pulling variations (especially seated rows) and prone middle and lower trap raises. The serratus anterior is also a very important muscle in facilitating scapular posterior tilt, a must for healthy overhead humeral activity. Supine and standing single-arm dumbbell protractions are good bets for dynamically training this small yet important muscle; scap pushups, scap dips, and scap pullups in which the athlete is instructed to keep the scapulae tight to the rib cage are effective isometric challenges to the serratus anterior. Concurrently, athletes with the classic postural problems should focus on loosening up the levator scapulae, upper traps, pecs, lats, and anterior delts. One must also consider if these postural distortions are compensatory for kinetic chain dysfunction at the lumbar spine, pelvis, or lower extremities. My colleague Mike Robertson and I have written extensively on this topic. Keep in mind that all of this advice won't make a bit of difference if you have terrible posture throughout the day, so pay as much attention to what you do outside the weight room as you do to what goes on inside it. Eric Cressey www.BuildingtheEfficientAthlete.com

shoulder-performance-dvdcover

Click here to purchase the most comprehensive shoulder resource available today: Optimal Shoulder Performance - From Rehabilitation to High Performance.
Read more

The “Great Eight” Reasons for Basketball Mobility Training

When it really comes down to it, regardless of the sport in question, the efficient athlete will always have the potential to be the best player on the court, field, ice, or track. Ultimately, knowledge of the game and technical prowess will help to separate the mediocre from the great, but that is not to say that physical abilities do not play a tremendously influential role on one’s success. Show me an athlete who moves efficiently, and I’ll guarantee that he or she has far more physical development “upside” than his or her non-efficient counterparts. This “upside” can simply be referred to as “trainability;” I can more rapidly increase strength, speed, agility, and muscle mass in an athlete with everything in line than I can with an athlete who has some sort of imbalance. That’s not to say that the latter athlete cannot improve, though; it’s just to say that this athlete would be wise to prioritize eliminating the inefficiencies to prevent injury and make subsequent training more effective. Unfortunately, most athletes fall into the latter group. Fortunately, though, with appropriate corrective training, these inefficiencies can be corrected, and you can take your game to an all-new level. Mobility work is one example of the corrective training you’ll need to get the job done. What’s the Difference Between Mobility and Flexibility? This is an important differentiation to make; very few people understand the difference - and it is a big one. Flexibility merely refers to range of motion - and, more specifically, passive range of motion as achieved by static stretching. Don’t get me wrong; static stretching has its place, but it won’t take your athleticism to the next level like mobility training will. The main problem with pure flexibility is that it does not imply stability nor readiness for dynamic tasks - basketball included. When we move, we need to have something called “mobile-stability.” This basically means that there’s really no use in being able to get to a given range of motion if you can’t stabilize yourself in that position. Believe it or not, excessive passive flexibility without mobility (or dynamic flexibility, as it’s been called) will actually increase the risk of injury! And, even more applicable to the discussion at hand, passive flexibility just doesn’t carry over well to dynamic tasks; just because you do well on the old sit-and-reach test doesn’t mean that you’ll be prepared to dynamically pick up a loose ball and sprint down-court for an easy lay-up. Lastly, extensive research has shown that static stretching before a practice or competition will actually make you slower and weaker; I’m not joking! Tell Me About This Mobility Stuff… So what is mobility training? It’s a class of drills designed to take your joints through full ranges of motion in a controlled, yet dynamic context. It’s different from ballistic stretching (mini-bounces at the end of a range of motion), which is a riskier approach that is associated with muscle damage and shortening. In addition to improving efficiency of movement, mobility (dynamic flexibility) drills are a great way to warm-up for high-intensity exercise like basketball. Light jogging and then static stretching are things of the past! My colleague Mike Robertson and I created a DVD known as Magnificent Mobility to address this pressing need among a wide variety of athletes - basketball players included. We’ve already received hundreds of emails from athletes and ordinary weekend warriors claiming improved performance, enhanced feeling of well-being, and resolution of chronic injuries after performing the drills outlined in the DVD. I think it’s safe to say that they like what we’re recommending! In case that feedback isn’t enough, here are seven reasons why basketball players need mobility. Reason #1: Mobility training makes your resistance training sessions more productive by allowing you to train through a full range of motion. We all know that lifting weights improves athletes’ performance and reduces their risk of injury. However, very few people realize the importance of being able to lift through a full range of motion. Training through a full range of motion will carry over to all partial ranges of motion, but training in a partial range of motion won’t carry over to full ranges of motion. For example, let’s assume Athlete A does ¼ squats. He’ll only get stronger in the top ¼ of the movement, and his performance will really only be improved in that range of motion when he’s on the court. Now, Athlete B steps up to the barbell and does squats through a full range of motion; his butt is all the way down by his ankles. Athlete B is going to get stronger through the entire range of motion - including the top portion, like Athlete A, but with a whole lot more. It goes without saying that Athlete B will be stronger than Athlete A when the time comes to “play low.” Also worthy of note is that lifting weights through a full range of motion will stimulate more muscle fibers than partial repetitions, thus increasing your potential for muscle mass gains. If you’re a post-player who is looking to beef up, you’d be crazy to not do full reps - and mobility training will help you improve the range of motion on each rep. Reason #2: Mobility training corrects posture and teaches your body to get range of motion in the right places. If you watch some of the best shooters of all time, you’ll notice that they always seem to be in the perfect position to catch the ball as they come off a screen to get off a jump shot. Great modern examples of this optimal body alignment are Ray Allen and Reggie Miller; their shoulders are back, chest is out, eyes are up, and hands are ready. The catch and shot is one smooth, seemingly effortless movement. By contrast, if you look at players with rounded shoulders, they lack the mobility to get to this ideal position as they pop off the screen. After they receive the ball, they need to reposition themselves with thoracic extension (“straightening up”) just so that they can get into their shooting position. This momentary lapse is huge at levels where the game is played at a rapid pace; it literally is the difference between getting a shot off and having to pass on the shot or, worse yet, having it swatted away by a defender. These athletes need more mobility in the upper body. As another example, one problem we often see in our athletes is excessive range-of-motion at the lumbar spine to compensate for a lack of range of motion at the hips. Ideally, we want a stable spine and mobile hips to keep our lower backs healthy and let the more powerful hip-joint muscles do the work. If we can’t get that range of motion at our hips, our backs suffer the consequences. Believe it or not, I’ve actually heard estimates that as much as 60% of the players in the NBA have degenerative disc disease. While there are likely many reasons (unforgiving court surface, awkward lumbar hyperextension patterns when rebounding, etc.) for this exorbitant number, a lack of hip mobility is certainly one of them. Get mobility at your hips, and you’ll protect that lower back! Reason #3: Mobility training reduces our risk of injury. It’s not uncommon at all to see athletes get injured when they’re out of position and can’t manage to right themselves. If we get range of motion in the right spots, we’re less likely to be out of position, so we won’t have to hastily compensate with a movement that could lead to an ankle sprain or ACL tear. As an interesting add-on, one study found that a softball team performing a dynamic flexibility routine before practices and c ompetition had significantly fewer injuries than a team that did static stretching before its games (1). Reason #4: Mobility training will increase range of motion without reducing your speed, agility, strength in the short-term. Believe it or not, research has demonstrated that if you static stretch right before you exercise, it’ll actually make you weaker and slower. I know it flies in the face of conventional warm-up wisdom, but it’s the truth! Fortunately, dynamic flexibility/mobility training has come to the rescue. Research has shown that compared with a static stretching program, these drills can improve your sprinting speed (2), agility (3), vertical jump (3-6), and dynamic range of motion (1) while reducing your risk of injury. Pretty cool stuff, huh? Reason #5: Mobility training teaches you to “play low.” All athletes want to know how to become more stable, but few understand how to do so. One needs to understand that our stability is always changing, as it’s subject to several environmental and physical factors. These factors include: 1. Body Mass - A heavier athlete will always be more stable. Sumo wrestling…need I say more? 2. Friction with the contact surface - The more friction we can generate (as with appropriate footwear) with the contact surface, the better our stability. Compare a basketball court (plenty of friction) to the ice in a hockey rink (very little friction), and you’ll see what I mean. This also explains why athletes wear cleats and track spikes. 3. Size of the base of support (BOS): In athletics, the BOS is generally the positioning of the feet. The wider the stance, the more stability we are. Again, think sumo wrestling. 4. The horizontal positioning of the center of gravity (COG) - For maximum stability, the COG should be on the edge of the BOS at which an external force is acting. In other words, if an opponent is about to push you at your right side, you’ll want to lean to the right in anticipation in order to maintain your stability after contact. 5. Vertical positioning of the COG: The lower the COG, the more stable the object. You’ll often hear sportscasters talk about Allen Iverson being unstoppable because of his “low center of gravity” or because he “plays low.” From a training standpoint, we can’t do much for #1, #2, or #4. However, mobility training alone can dramatically impact how well an athlete handles #3 and #5. The better our mobility, the easier it is for us to get wider and get lower. The wider and lower we can get when we need to do so, the better we can maintain our center of gravity within our base of support. Neuromuscular factors - collecting providing for our balancing proficiency - such as muscular strength and kinesthetic awareness play into this as well, and the ultimate result is our stability (or lack thereof) in a given situation. Reason #6: Mobility training can actually make you taller…Really! I’ve worked with a lot of basketball players, and I can honestly say that not a single one of them has ever told me that he wants to be shorter. And, I can assure you that the coaches and scouts would take a guy who is 7-0 over a 6-11 prospect any day. So what does that have to do with our mobility discussion? Well, imagine an athlete who is very tight in his flexors; his hips will actually be slightly flexed in the standing position, as the pelvis will be anteriorly tilted (top of the hip bone is tipping forward). Likewise, if an athlete has tightness in his lats (among other smaller muscles), he’ll be unable to fully reach overhead. These two limitations can literally make an athlete two inches shorter in a static overhead reach assessment. Just as importantly, such an athlete is going to “play smaller,” too. He won’t jump as high because he can’t get full hip extension and won’t be able to optimally make use of the powerful gluteal muscles. And, his reach will be limited by his inability to get the arms up fully. Together, these factors could knock two inches off his vertical jump and prevent him from making a game-saving block. It really is a game of inches. Need further proof? I’ve seen several athletes instantly add as much as two inches on their vertical jump just from stretching out the hip flexors and lats before they test. This is an acute change in muscle length, though; mobility training will enable you to attain these ranges of motion all the time. Reason #7: Mobility and “activation” training teach certain “dormant” muscles to turn on. In our daily lives and on the basketball court, it’s inevitable that we get stuck in certain repetitive movement patterns - things we do every day, several times a day. With these constant patterns, certain muscles will just “shut down” because they aren’t being used. Two good examples would be the glutes (your butt muscles) and the scapular retractors (the muscles that pull your shoulder blades together). As a result, these shutdowns lead to faulty hip positioning and rounded shoulders, respectively (and a host of other problems, but we won’t get into that). To correct these problems, we need what is known as activation work. These drills teach dormant muscles to fire at the right times to complement the mobility drills and get you moving efficiently. Mike and I went to great lengths in Magnificent Mobility to not only outline mobility drills, but also activation movements and movements that incorporate components of both. Reason #8: Having mobility feels good! Think about it: what’s the first thing an athlete wants to do after a good stretching session? Go run and jump around! Now, just imagine having that more limber feeling all the time; that’s exactly what mobility training can do for you. Closing Thoughts Knowledge of the game and technical prowess will take an athlete far in the game of basketball, but it takes an efficient body to build the physical qualities that will take that same athlete to greatness. Without adequate mobility, an athlete will never even reach the efficient stage - much less the next level. Eric Cressey www.MagnificentMobility.com References 1. Mann, DP, Jones, MT. Guidelines to the implementation of a dynamic stretching program. Strength Cond J. 1999;21(6):53-55. 2. Nelson AG, Kokkonen J, Arnall DA. Acute muscle stretching inhibits muscle strength endurance performance. J Strength Cond Res. 2005 May;19(2):338-43 3. Kurz, T. Science of Sports Training. Stadion, 2001. 4. Young WB, Behm DG. Effects of running, static stretching and practice jumps on explosive force production and jumping performance. J Sports Med Phys Fitness. 2003 Mar;43(1):21-7. 5. Thompson, A, Kackley, T, Palumbo, M, Faigenbaum, A. Acute effects of different warm-up protocols on jumping performance in female athletes. 2004 New England ACSM Fall Conference. 10 Nov 2004. 6. Colleran, EG, McCarthy, RD, Milliken, LA. The effects of a dynamic warm-up vs. traditional warm-up on vertical jump and modified t-test performance. 2003 New England ACSM Fall Conference. 11 Nov 2003.
Read more

Fixing the Flaws: Weak Dorsiflexors

It's extremely common for athletes to perform all their movements with externally rotated feet. This positioning is a means of compensating for a lack of dorsiflexion range of motion – usually due to tight plantarflexors - during closed-chain knee flexion movements. In addition to flexibility initiatives for the calves, one should incorporate specific work for the dorsiflexors; this work may include seated dumbbell dorsiflexions, DARD work, and single-leg standing barbell dorsiflexions. These exercises will improve dynamic postural stability at the ankle joint and reduce the risk of overuse conditions such as shin splints and plantar fasciitis. Eric Cressey www.BuildingtheEfficientAthlete.com
Read more

Fixing the Flaws: Poor Frontal Plane Stability at the Hips

Frontal plane stability in the lower body is dependent on the interaction of several muscle groups, most notably the three gluteals, tensor fascia latae (TFL), adductors, and quadratus lumborum (QL). This weakness is particularly evident when an athlete performs a single-leg excursion and the knee falls excessively inward or (less commonly) outward. Generally speaking, weakness of the hip abductors – most notably the gluteus medius and minimus – is the primary culprit when it comes to the knee falling medially, as the adductors, QL, and TFL tend to be overactive. However, lateral deviation of the femur and knee is quite common in skating athletes, as they tend to be very abductor dominant and more susceptible to adductor strains as a result. In both cases, closed-chain exercises to stress the hip abductors or adductors are warranted; in other words, keep your athletes off those sissy obstetrician machines, as they lead to a host of dysfunction that's far worse that the weakness the athlete already demonstrates! For the abductors, I prefer mini-band sidesteps and body weight box squats with the mini-band wrapped around the knees. For the adductors, you'll have a hard time topping lunges to different angles, sumo deadlifts, wide-stance pull-throughs, and Bulgarian squats. Eric Cressey www.BuildingtheEfficientAthlete.com Technorati Tags: , , , , , , , , , ,
Read more

True March Madness, or April Fool’s?

With the NCAA tournament final on Monday night, I thought this email exchange I had Sunday morning might be of interest. As a little background, I was recently contacted by a local D3 basketball coach to help with his team’s off-season conditioning. As a little background, this team is a solid D3 program that generally loses in the first round of the NCAA tournament after winning its conference regular season title. I gathered some background information on the team, and even went up to check out a game a few weeks ago. Following the game, we met up, talked shop, and worked out some of the details on what I’d be doing to help them out; it was a go.

Then, I got an email that included the following:

We just met as a staff and when they were down in Atlanta they met with the a couple of coaches from the NYC area and decided to do a three day trip in mid December. Obviously this is a great experience for our players, but this trip cripples our budget. After punchig the numbers we literally have just under $400 dollars so now we have to adjust everything, including working with you. I appreciate the effort you have devoted to us since I first contacted you and I hope we are able to work something out, if not this year, certainly in years to come. When you find the time let me know what you think about situation.”

Honestly, I don’t really need the money, so doing this was going to be more for my own fun – and I liked the idea of helping out some coaches that were enthusiastic and open-minded (or at least I thought they were).


Here was my response:

Thanks for the update.

I have to be very honest with you: you guys are falling in to the trap that a lot of coaches fall into.

When my buddy and I left your game a few weeks ago, we remarked about how your team basically looked like a "good" high school team in New England. The thing is that neither of us really know a damn thing about the tactical aspect of basketball; we were referring to the speed of play, level of aggressiveness, and utter lack of athleticism. Your players were no different from their competition in terms of memorizing plays/defense, shooting, or anything tactically that could potentially differentiate them. They were just slower, fatter, and weaker - poor relative strength with reactive ability that was mediocre at best. Do you think that they remember plays any worse than the guys at Florida or Ohio St? Trust me, tactically, your guys are probably AHEAD of what you see in D1 ball (as evidenced by average scholastic achievement); they just aren't as physically gifted.

These deficiencies are readily trainable - and you get the added bonus of increased team camaraderie and attitude in the process.

Instead, you guys are going to spend more time on the tactical side of things - basically changing the engine on a car with square wheels. And, you're going to do it over three days while ignoring something more valuable that could span 16-20 weeks. Motor learning doesn't happen in three days.

The guys don't need a three-day vacation mid-season. They need to can the permanent vacation they've been on with respect to off-season conditioning and diet and get their act together. I would encourage you to think "different" instead of thinking "better" - otherwise you're just going to be waiting around until someone tells you what you want to hear.

Hope this wasn't too blunt.


Last night, the commentators noted that it would be very interested to see if Greg Oden of Ohio State – likely the most important man on the team – would be able to withstand the outstanding mobility of Florida’s big men. Mobility is a quality that is very easily trained.

Conversely, I didn’t hear anyone questioning whether Florida or Ohio State’s players could remember their defensive schemes or in-bounding plays.

Tomorrow night, when you’re watching the NCAA tournament final, consider who would be better off: the team that did a three-day crash course on the court in-season, or a team that worked the hardest and smartest in the off-season to prepare for the grueling in-season period.

For more information, check out UltimateOffSeason.com

Eric Cressey



Read more

Hot off the Press!

I just got this in the mail today; it’s yet another study to show that static stretching pre-training is (with a few minor exceptions) a big no-no! Bradley, P.S., P.D. Olsen, and M.D. Portas. The effect of static, ballistic, and proprioceptive neuromuscular facilitation stretching on vertical jump performance. J. Strength Cond. Res. 21(1):223-226. 2007. The purpose of this study was to compare the acute effects of different modes of stretching on vertical jump performance. Eighteen male university students (age, 24.3 +/- 3.2 years; height, 181.5 +/- 11.4 cm; body mass, 78.1 +/- 6.4 kg; mean +/- SD) completed 4 different conditions in a randomized order, on different days, interspersed by a minimum of 72 hours of rest. Each session consisted of a standard 5-minute cycle warm-up, accompanied by one of the subsequent conditions: (a) control, (b) 10-minute static stretching, (c) 10-minute ballistic stretching, or (d) 10-minute proprioceptive neuromuscular facilitation (PNF) stretching. The subjects performed 3 trials of static and countermovement jumps prior to stretching and poststretching at 5, 15, 30, 45, and 60 minutes. Vertical jump height decreased after static and PNF stretching (4.0% and 5.1%, p <> 0.05). However, jumping performance had fully recovered 15 minutes after all stretching conditions. In conclusion, vertical jump performance is diminished for 15 minutes if performed after static or PNF stretching, whereas ballistic stretching has little effect on jumping performance. Consequently, PNF or static stretching should not be performed immediately prior to an explosive athletic movement. Okay, so we know that static and PNF stretching are bogus, and it looks like ballistic stretching doesn’t do much for us, either. So what can we do to warm up for effective performance? Fletcher IM, Jones B. The effect of different warm-up stretch protocols on 20 meter sprint performance in trained rugby union players. J Strength Cond Res. 2004 Nov;18(4):885-8. The purpose of this study was to determine the effect of different static and dynamic stretch protocols on 20-m sprint performance. The 97 male rugby union players were assigned randomly to 4 groups: passive static stretch (PSS; n = 28), active dynamic stretch (ADS; n = 22), active static stretch (ASST; n = 24), and static dynamic stretch (SDS; n = 23). All groups performed a standard 10-minute jog warm-up, followed by two 20-m sprints. The 20-m sprints were then repeated after subjects had performed different stretch protocols. The PSS and ASST groups had a significant increase in sprint time (p < or =" 0.05)," or =" 0.05)."> or = 0.05). The decrease in performance for the 2 static stretch groups was attributed to an increase in the musculotendinous unit (MTU) compliance, leading to a decrease in the MTU ability to store elastic energy in its eccentric phase. The reason why the ADS group improved performance is less clear, but could be linked to the rehearsal of specific movement patterns, which may help increase coordination of subsequent movement. It was concluded that static stretching as part of a warm-up may decrease short sprint performance, whereas active dynamic stretching seems to increase 20-m sprint performance. Dynamic stretching, huh? Maybe these Cressey and Robertson guys are on to something with that DVD of theirs… www.MagnificentMobility.com
Read more
Page 1 6 7 8
LEARN HOW TO DEADLIFT
  • Avoid the most common deadlifting mistakes
  • 9 - minute instructional video
  • 3 part follow up series