Home Baseball Content (Page 82)

Thoracic Spine Issues

Fantasy Day at Fenway Park

I’ll be making my Fenway Park debut on Saturday. I know it’s hard to believe, but it won’t be for my catching abilities, base-stealing prowess, or 95-mph two-seam fastball. Rather, I’ll be speaking on a panel at the annual Fenway Park Fantasy Day to benefit The Jimmy Fund. And, if people don’t give a hoot about listening to me, they’ve got a skills zone with batting cages, a fast-pitch challenge, and accuracy challenge on top of loads of contests and tours. I’ll be sure to snap some photos for you.

This is an absolutely great cause, and while I know most of you won’t be in attendance, I’d highly encourage you to support the cause with a donation to the Jimmy Fund. What they are doing is something very special, and I’m honored to be a part of it.

Subscriber Only Q&A Q: One quick question. As a trainer, I'm sure you've come across certain clients who have a problem with their thoracic spine (mild hump) and need to work on mobilizing this region. Other than foam rollers, are there any other techniques or methods that can be used? Maybe there's a book or video out there I could purchase that gives me a better understanding of how to implement some new methods?

A: Thanks for the email.  It really depends on whether you're dealing with someone who just has an accentuated kyphotic curve or someone who actually has some sort of clinical pathology (e.g. osteoporosis, ankylosing spondylitis, Cushing’s Syndrome) that's causing the "hump."  In the latter case, you obviously need to be very careful with exercise modalities and leave the “correction” to those qualified to deal with the pathologies in question.

In the former case, however, there’s quite a bit that you can do. You mentioned using a foam roller as a “prop” around which you can do thoracic extensions:

Thoracic Extensions on Foam Roller

While some people think that tractioning the thoracic spine in this position is a bad idea, I don’t really agree. We’ve used the movement with great success and absolutely zero negative feedback or outcomes.

That said, I’m a firm believer that the overwhelming majority of thoracic spine mobilizations you do should integrate extension with rotation. We don’t move straight-ahead very much in the real-world, so the rotational t-spine mobility is equally important. Mike Robertson and Bill Hartman do an awesome job of outlining several exercises along these lines in their Inside-Out DVD; I absolutely love it.

With most of these exercises, you’re using motion of the humerus to drive scapular movement and, in turn, thoracic spine movement.

The importance of t-spine rotation again rang true earlier this week when I had lunch with Neil Rampe, director of corrective exercise and manual therapy for the Arizona Diamondbacks. Neil is a very skilled and intuitive manual therapist, and he had studied extensively (and observed) the effect of respiration. He made some great points about how we can’t get too caught up in symmetry. Neil noted that we’ve got a heart in the upper left quadrant, and a liver in the lower right. The left lung has two lobes, and the right lung has three – and there’s some evidence to suggest that folks can usually fill their left lung easier than their right. The right diaphragm is bigger than the left –and it can use the liver for “leverage.” The end result is that the right rib winds up with a subtle internally rotated position, which in turns affects t-spine and scapular positioning. Needless to say, Neil is a smart dude – and once I got over how stupid I felt – I started scribbling notes. I’m going to be looking a lot more at breathing patterns as a result of this lunch.

Additionally, it’s very important to look at the effects of hypomobility and hypermobility elsewhere on thoracic spine posture. If you’re stuck in anterior pelvic tilt with a lordotic spine, your t-spine will have to compensate by rounding in order to keep you erect. And, if you’ve shortened your pecs and pulled the scapulae into anterior tilt and protraction, you’ll have a t-spine that’s been pulled into flexion. Or, if you’ve done thousands and thousands of crunches, chances are that you’ve shortened your rectus abdominus so much that your rib cage is depressed to the point of pulling you into a kyphotic position.

On the hypermobility front, poor rotary stability at the lumbar spine can lead to excessive movement at a region of the spine that really isn’t designed to move. It’s one reason why I like Jim Smith’s Combat Core product so much; he really emphasize rotary stability with a lot of his exercises. Lock up the lumbar spine a bit, and you’ll get more bang for your buck on the t-spine mobilizations.

As valuable as all the t-spine extension and rotation drills can be, they are – when it really comes down to it – just mobility drills. And, to me, mobility drills yield transient effects that must be sustained and complemented by appropriate strength and endurance of surrounding musculature. Above all else, strength of the appropriate scapular retractors (lower and middle trapezius) is important. You can be very strong in horizontal pulling – but have terrible posture and shoulder pain – if you don’t row correctly.

Not being cognizant of head and neck position can lead to a faulty neck pattern:

Cervical hyperextension (Chin Protrusion) Pattern

Here, little to no scapular retraction takes place. And, whatever work is done by the scapular retractors comes from the upper traps and rhomboids – not what we want to hit.

Then, every gym has this guy. He just uses his hip and lumbar extensors to exaggerate his lordotic posture and avoid using his scapular retractors at all costs.

Another more common, but subtle technical flaw is the humeral extension with scapular elevation. Basically, by leaning back a bit more, an individual can substitute humeral extension for much of the scapular retraction that takes place – so basically, the lats and upper traps are doing all the work. This can be particularly stressful on the anterior shoulder capsule in someone with a scapula that sits in anterior tilt because of restrictions on pec minor, coracobrachialis, or short head of the biceps. Here is what that issue looks like when someone is upright like they should be. A good seated row would like like this last one – but with the shoulder blades pulled back AND down. We go over a lot of common flaws like these in our Building the Efficient Athlete DVD series.

Finally, don’t overlook the role that soft tissue quality plays with all of this. Any muscle – pec minor, coracobrachialis, short head of the biceps – that anteriorly tilts the scapulae can lead to these posture issues. Likewise, levator scapulae, scalenes, subclavius, and some of the big muscles like pec major, lats, and teres major can play into the problem as well. I’ve always looked at soft tissue work as the gateway to corrective exercise; it opens things up so that you can get more out of your mobility/activation/resistance exercise.

Hopefully, this gives you some direction.

All the Best, EC Sign-up Today for our FREE Baseball Newsletter and Receive a Copy of the Exact Stretches used by Cressey Performance Pitchers after they Throw!
Read more

Youth Sports Injuries

Never in my wildest dreams did I think that – at age 27 – I’d ever use the phrase “when I was young.” However, I found myself doing exactly that earlier this week in response to a question posed by a parent of one of our athletes.

Somehow in conversation, we got on the topic of the alarming rates of youth sports injuries – everything from ACL ruptures, to stress fractures, to Tommy John surgeries – at hand today. He asked very simply, “Why has it gotten so bad – and seemingly so fast?”

My response was, “Well, there are a lot of reasons. First – and most significantly – when I was young…”

I nearly swallowed my tongue when I caught myself saying that, but continued on.

Over the next few minutes, I talked a bit about what my buddies and I did every day after school when I was growing up. I lived next door to a church that had a big grass parking lot that was only used on Sundays. The rest of the week, it was a football/baseball/wiffleball/soccer/dodgeball/any-other-ball-you-can-think-of extravaganza. We played until our mothers called us home to dinner. There were days when I was so dirty when I got home that my parents just threw my clothes away rather than try to wash them.

In terms of organized sports, we never played a sport for more than six months consecutively – and even that time period would be a stretch. I can remember being involved in organized soccer, basketball, flag football, tennis, and baseball around fourth grade.

You know what’s wild? From that little churchyard in little Kennebunk, Maine came six eventual NCAA athletes and seven NCAA coaches (four in lacrosse, two in strength and conditioning, and one in football). There was a D1 All-American/professional lacrosse player, 500-pound raw bench press, and world record in the deadlift. There were no ACL tears, stress fractures, ulnar collateral ligament ruptures, or cases of plantar fasciitis. I didn’t even know what an athletic trainer was until I was a sophomore in high school.

The point – which may be hackneyed to many of my newsletter subscribers by now – is that we stayed healthy and came into some athletic success by playing a lot at a young age, but participating a little. And, personally, it wasn’t until I specialized more and started playing tennis nine months out of the year (November-August) that I started dealing with chronic shoulder problems. Had I known then what I know now, it would have been manageable – especially with my diverse athletic background.

So, this brings me to several points…

First, there are more opportunities than ever to participate year-round and without restrictions. Most sport coaches know only tactics and not physiology, so at a time when recognizing the warning signs of injury and burnout is most important, those supervising the system are the least prepared.

Second, to take it a step further, we are an increasingly sedentary society. Kids sit all day in school, then go home to sit at home and talk on instant messenger or surf the web. They don’t ride bikes or walk to their friends’ houses; they drive or get rides. Heck, they don’t even call their friends anymore; they just text them because human interaction is just too fatiguing! Taking a more sedentary population and combining it with an increased volume of participation in a more specialized athletic scenario is a recipe for injuries. It’s like entering this hunk of junk in the Daytona 500.

Third, in spite of the fact that kinesiology, exercise science, biomechanics, and related health and human performance fields are actually courses of study at academic institutions and beyond – and all the information on training young athletes is out there, if you know where to look – there really aren’t many people doing it correctly. Thanks to some wretched attempts at franchising youth sports training, we’ve been left with a lot of parents and kids that think “running cones” is where it’s at. Many others have just written the idea of youth performance training off altogether because they’ve had bad experiences in these situations. Kids can run cones on their own; they need to be taught how to run, jump, land, lift, and throw.

So, what to do to remedy the situation?

First off, I wish more people would read Brian Grasso’s stuff at DevelopingAthletics.com. Brian’s at the forefront of youth fitness training and really gets it.

Second, while I’d like to think that it’s possible to “undo” the specialization trend, it’s simply not going to happen, folks. The best we’re going to do is learn to recognize the symptoms of burnout/injury early on – and encourage kids to hold off until later in high school before choosing one specific sport. Kirk Fredericks, head coach of the Lincoln-Sudbury High School varsity baseball team (Massachusetts State Champs in 2005 and 2007), is the single-best coach with whom I have worked at any level. I was at his team’s award banquet two weeks ago to hear Kirk credit the success of his only three sophomores on the varsity squad to playing multiple sports and focusing on getting stronger. He didn’t rave about how they took batting practice 365 days of the year – or all the time they spent running cones. Versatility, athleticism, and strength were what differentiated them from their peers.

Third, kids need to move – and be taught how to move. Call me biased, but organized strength and conditioning settings are, in my opinion, the best way to provide young athletes with the favorable outcomes and fun through the inherent variety featured in any appropriate S&C program. You can train mobility, activation, strength, stability, reactive ability, sprint mechanics, you name it – all in a single session.

Fourth, I would like to see physicians become more proactive with encouraging young athletes to seek out effective training. Having communicated with some excellent physicians myself, I’ve come to realize that the best doctors know that their recommendations to young athletes go beyond simply protecting sutures. It is also about setting an athlete up for future health and success.

Fifth, those training young athletes have to not only get more in-tune with how to do it well, but also structure their business models to accommodate leveraging this knowledge. I can only speak to what I have practiced with Cressey Performance:

1. Grow slowly and hire extremely carefully.

2. Know every bit of each athlete’s health history.

3. Program individually.

4. Put young athletes in an environment in which they can thrive on each other’s energy.

5. Provide specific, quantifiable markers of progress to foster further motivation.

6. Communicate regularly with sport coaches, parents, and the athletes themselves.

7. Appreciate that young athletes are not simply smaller adults.

8. Recognize the imbalances inherent to particular sports.

9. Treat every athlete as if he/she is your own son/daughter (assuming you are not a psycho parent).

10. Keep it FUN.

Audio Interview with EC

About a month ago, I did a phone interview with Kaiser Serajuddin on the topic of the business of personal training. You can listen to it HERE.

Blog Updates

Maximum Strength: Working Around Equipment Limitations

Heavy Lifting to Wussy Music: Why Not?

Ignorance is Bliss

A special thanks goes out to Chris Poirier, the entire Perform Better staff, and all the attendees from this year’s PB Summits. Thanks for making them such great events!

I’ll be at the 2nd Annual Distinguished Lecture Series in Sports Medicine this Friday at Northeastern University – and hopefully have some newsletter tidbits for you from it next week. It’ll be nice to do the listening instead of the lecturing this time – although I may be available for guest shadow puppet and magic trick exhibitions in the lobby on request!

All the Best,


Sign-up Today for our FREE Baseball Newsletter and Receive a Copy of the Exact Stretches used by Cressey Performance Pitchers after they Throw!
Read more

Baseball Pitchers: “Laying Back”

Q: I am a 18-year-old Division 1 college baseball pitcher, and I have a baseball mechanic/ biomechanical question for you. I've been trying to get my arm to "lay back" like in this picture of Billy Wagner.
When I pitch, my arm is not parallel to the ground like most major league pitchers. I am trying to throw with a more relaxed arm which helps it "lay back" more efficiently to help me throw harder, but I am struggling to get it to resemble the picture of Billy. Basically, I am just looking for suggestions on how to help my arm lay back from a biomechanical standpoint. Am I "too tight?" What are the possible reasons for it? Scar tissue? Flexibility? What are some solutions? A: Okay, I have a bunch of thoughts on this – and hopefully I can relate them pretty clearly and concisely. Want to know the biggest difference between you and Billy Wagner? 19 years of pitching! Seriously, there are just disgusting forces put on the shoulder and elbow joints over time in throwing a baseball. And, as a result, you can actually get changes in the structure of the bone. For instance, the research has shown that pro pitchers have on average 13.3° less total arc of elbow flexion-extension. To recreate the forces on Wagner's elbow in that picture, you'd have to take a plumb line and hang it down from his throwing hand with a 40-pound weight attached. Crazy, eh? The shoulder isn't much different; most of the pros have thickened posterior glenohumeral (shoulder) joint capsules. This can be advantageous for getting more external rotation to generate added velocity, but disadvantageous in terms of injury prevention, as the glenohumeral internal rotation deficit (GIRD) that results causing posterior, superior translation of the humeral head during the late cocking phase of throwing. Ever heard of a SLAP lesion? It’s superior-labrum-anterior-posterior. It’s no wonder that the guys with symptomatic labrum problems are the ones who have the least amount of internal rotation ROM. Younger guys are different. Little leaguers have little to no shoulder stiffness, and present with lateral elbow issues (compression type issues from the stress in the cocking to acceleration transition). As guys get to 14/15+, you start seeing more muscular stiffness in the posterior shoulder girdle, and the elbow problems are more medial and related to valgus-extension overload (the acceleration to deceleration transition). Take a look at what valgus-extension overload can do to a 16-year-old’s elbow when he throws a lot while developing:
Can you tell that he’s right-handed? And, more specifically, can you see how the alterations to bony structure can make it easier to “lay back?” Just imagine his right arm in the cocking position; he’s got an extra 10° of ROM over the rest of us. This doesn't speak to the flexibility limitation you refer to directly, but what it does show is that one of the best ways to develop pitching-specific flexibility is to throw as you develop - and at age 18/19, you're still headed in that direction. Now, with that said, you're probably wondering why some kids can pop 90+ mph while still in high school, but you can't. First, there is a big genetic component to flexibility; some guys just have crazy laxity. I've found that long spines can be extremely advantageous in pitchers, as they allow guys to go into lumbar flexion in the follow-through without hitting end range (where disc issues present). As long as an athlete like this doesn’t get lazy and leave out his lumbar stabilization exercises, he’ll thrive with such a build. As for stuff you can fix, you could be looking at: 1. Soft tissues and flexibility restrictions in pectoralis major, latissimus dorsi, or subscapularis – all of which would limit shoulder external rotation range of motion. I don’t normally like to stretch pecs in baseball pitchers simply because it’s a bit too much stress on the anterior capsule (alongside the crazy stress they get from throwing all the time), but it does have merit in some guys, particularly those who care too much about their bench press… 2. Restrictions in levator scapulae, pec minor, and rhomboids alongside weakness of lower trap and serratus anterior. These issues would interfere with effective upward rotation and posterior tilting of the scapula on the throwing side. 3. Poor thoracic spine extension and rotation. This is one more reason that doing thousands of crunches is a stupid idea; you’re chronically shortening your rectus abdominus and pulling your rib cage into depression, making it hard to extend your thoracic spine to lay back. Watch how much thoracic extension and rotation Nolan Ryan gets HERE. 4. Poor mobility of the opposite hip and ankle. If you take a look at the pitcher of Wagner above, you’ll see that the lead leg hip is flexed almost completely as the shoulder is in maximal external rotation. If you’re trying to lengthen on the front side, you’ll lose it on the back side. Kibler et al. found that in 49% of arthroscopically repaired SLAP lesions, there was a weakness or range of motion deficit in the opposite hip. 5. Poor core stability. This sounds like a buzz word, but there is actually merit to it. I got to thinking about it when I watched two athletes do overhead med ball stomps to the floor alongside one another. The first – one of our most experienced high school athletes – maintained a neutral lumbar spine and only a small amount of thoracic flexion as he stomped; the position of the rib cage was pretty constant. The second guy, who was in his first week, really “caved over;” the rib cage dropped as he stomped. Sure, this relates considerably to #3, but it also speaks to the weakness of the lumbar and thoracic erectors to resist the flexion momentum. These same erectors are going to be the ones that allow a pitcher to post-up, stand-tall, and throw gas downward. They don’t recruit predominantly tall guys for nothing, you know… Obviously, this just speaks to the direct flexibility issues affecting velocity. There are a ton of strength and power measure you have to take as well. We tell our guys that you have to “train ass to throw gas.” In other words, posterior chain strength is huge for the push off on the back leg and for the deceleration on the front leg. It takes a ton of glute and hamstrings strength to decelerate a 95mph fastball that ends like this: And, to take it a step further, if you’re a guy who throws more across your body (more rotation), you better have some excellent rotary stability at the lumbar spine to resist that destabilizing torque at follow-through – and the hip rotation range of motion to ensure that you’re rotating at the right places. Otherwise, your back will get chewed up pretty quickly. A lot of the movements in Jim Smith's Combat Core Manual are great for preventing this problem. So, all that said, to the naked eye, they’d say you just need to stretch your pecs to more effectively “lay back.” There’s actually a lot more to it – and the pec stretching could even give you problems if done too aggressively or if that isn’t your particular need. For more information, I strongly encourage you to check out the 2008 Ultimate Pitching Coaches Boot Camp DVD set. Blog Updates Confessions of an Ex-Ironman A Great Read on Being Barefoot Just Another Afternoon at Cressey Performance (my personal favorite for the week) Maximum Strength Update To those who have purchased Maximum Strength, all pre-orders have now shipped out. To those who haven’t, what are you waiting for? Check it out here: Maximum Strength. “The Maximum Strength program took me to the next level of performance with my lifting. After using a variety of programs focusing on fat-loss and hypertrophy and having limited results from them it was great to see such solid increases in strength and physique changes from the program. In addition, the program focus on dynamic flexibility and foam rolling has resulted in an injury free training cycle and major flexibility and posture improvements. I would highly recommend this program and book to anyone wanting to make real progress with strength, performance and body composition.” Dan Hibbert – Calgary, Alberta Increased body weight by 14 pounds, broad jump by seven inches, box squat by 80 pounds, bench press by 30 pounds, deadlift by 70 pounds, and 3-rep max chin-up by 27.5 pounds. All the Best, EC Sign-up Today for our FREE Baseball Newsletter and Receive a Copy of the Exact Stretches used by Cressey Performance Pitchers after they Throw!
Read more

Newsletter #95

Inefficiency vs. Pathology

Q: I read with great interest your baseball interview at T-Nation, as I have two sons who play high school baseball. More interestingly to me, though, was this statement:

“Pathology (e.g., labral fraying) isn't as important as dysfunction; you can have a pathology, but not be symptomatic if you still move well and haven't hit "threshold" from a degenerative or traumatic standpoint.”

Is this something that can be applied to the rest of the body?

A: Great question – and the answer is a resounding “Absolutely!”

Many musculoskeletal issues are a function of cumulative trauma on a body with some degree of underlying inefficiency. People reach threshold when they do crazy stuff – or ignore inefficiencies – for long enough. Here are a few examples:

Lower Back Pain

As I touched on in a recent newsletter, we put a lot of compressive loading on our spines in the typical weight-training lifestyle – and you’d be surprised at how many people have spondylolysis (vertebral fractures) that aren’t symptomatic. But there’s more…

A 1994 study in the New England Journal of Medicine sent MRIs of 98 "healthy" backs to various doctors, and asked them to diagnose them. The doctors were not told that the patients felt fine and had no history of back pain.

80% of the MRI interpretations came back with disc herniations and bulges. In 38% of the patients, there was involvement of more than one disc.

It’s estimated that 85% of lower back pain patients don’t get a precise diagnosis.


You’d be amazed at how many people are walking around with labral fraying/SLAP lesions, partially torn rotator cuffs, and bone spurs. However, only a handful of people are in debilitating pain – and others just have a testy shoulder that acts up here and there. What’s the issue?

These individuals might have a fundamental defect in place, but they’ve likely improved scapular stability, rotator cuff strength/endurance, thoracic spine range-of-motion, soft tissue quality, cervical spine function, breathing patterns, mobility of the opposite hip/ankle, and a host of other contributing factors – to the point that their issues don’t become symptomatic.


They do a lot of Tommy John surgeries and ulnar nerve transpositions for elbow issues that can often be resolved with improving internal rotation range-of-motion at the shoulder, or cleaning up soft tissue restrictions on flexor carpi ulnaris, flexor carpi radialis, pronator teres, etc.

According to Dr. Glenn Fleisig, during the throwing motion, at maximal external rotation during the cocking phase, there is roughly 64 Nm of varus torque at the elbow in elite pitchers. This is equivalent to having a 40-pound weight pulling the hand down.

The other day, I emailed back and forth with my good friend, physical therapist John Pallof about elbows in throwing athletes, and he said the following:

“Over the long term, bone changes just like any other connective tissue according to the stresses that are placed on it.  Most every pitcher I see has some structural and/or alignment abnormality – it’s just a question of whether it becomes symptomatic.  Many have significant valgus deformities.  Just disgusting forces put on a joint over and over and over again.”

Makes you wonder who is really "healthy," doesn't it? Carpal Tunnel

I can’t tell you how many carpal tunnel surgeries can be avoided when people get soft tissue work done on scalenes, pec minor, coracobrachialis, and several other upper extremity adhesion sites – or adjustments at the cervical spine – but I can tell you it’s a lot.

Knee Pain

Many ACL tears go completely undiagnosed; people never become symptomatic.

I know several people who have ruptured PCLs from car crashes or contact injuries – but they work around them.

Some athletes have big chunks of the menisci taken out, but they can function at 100% while other athletes are in worlds of pain with their entire menisci in place.

Many knee issues resolve when you clear up adhesions in glute medius, popliteus, rectus femoris, ITB/TFL, psoas, and the calves/peroneals; improve ankle and hip mobility; and get the glutes firing.

I’m of the belief that all stress on our systems is shared by the active restraints and passive restraints. Active restraints include muscles and tendons – the dynamic models of our bodies. Passive restraints include labrums, menisci, ligaments, and bone; some of them can get a bit stronger (particularly bone), but on the whole, they aren’t as dynamic as muscles and tendons.

Now, if the stress is shared between active and passive restraints, wouldn’t it make sense that strong and mobile active restraints would protect ligaments, menisci, and labrums? The conventional medical model – whether it’s because of watered-down physical therapy due to stingy insurance companies or just a desire to do more surgeries – fixes the passive restraints first. In some cases, this is good. In other cases, it does a disservice to the dynamic ability of the body to protect itself with adaptation.

I’m also of the belief that there are only a handful of exercises that are genuinely bad; upright rows, leg presses, and leg extensions are a few examples. The rest are just exercises that are bad for certain people – or exercises that are bad when performed with incorrect technique.

With these latter two issues in mind, find the inefficiency, fix it, and you'd be surprised at how well your body works when it moves efficiently.

Teleseminar Series Reminder

Just a reminder that this awesome FREE offer from Vince DelMonte starts next week, so don’t wait to sign up! My interview will be Monday, April 7.

Ultimate Muscle Advantage Teleseminar Series

All the Best, EC Sign-up Today for our FREE Baseball Newsletter and Receive a Copy of the Exact Stretches used by Cressey Performance Pitchers after they Throw!
Read more

Strength Coach Podcast

Strength Coach Podcast

I was recently interviewed by Anthony Renna for Strength Coach Podcast #6 – and there is also some good Q&A with Mike Boyle, Gray Cook, and Jamie Harvie of Perform Better. Check it out HERE.

New Article

I had a new article published at T-Nation last week. For those who missed it:

What I Learned in 2007


Q: Are partial deadlifts (rack pulls) supposed to work your lower back harder than regular deadlifts? The reason I ask is that my lower back tends to be more sore when I do rack pulls; does it necessarily mean that my form is bad? Or, could it be that my lower back is weak?

A: No; they don’t hit the lower back harder in a relative (to the glutes and hamstrings) sense, but absolutely, sure. Assuming a pin setting close to the knees, rack pulls allow you to use more weight – so they’ll definitely hit the upper back and grip harder.  Like a regular deadlift, you still need to transfer force from the lower to upper body. However, the fact that your form falters with added load even with a reduction in range of motion tells me that the force transfer side of things is where you falter.

In reality, lower backs are rarely weak; most guys overuse them.  Research has shown that lower back injury risk is positively associated with lumbar spine range of motion. The more your lower back moves, the more likely it is to get hurt.

My sense is that it's multidirectional lumbar spine instability that only gets better with:

a) avoiding lumbar flexion and rotation, especially under load

b) training under PROGRESSIVELY heavier loads, meaning that you don't attempt a weight you can't lift in perfect form

c) keep focusing on anti-rotator/anti-sagittal-plane-motion training - side bridges, pallof presses, kneeling cable chops, bar rollouts, etc

d) optimizing range of motion at the hips and thoracic spine

Mike Robertson, Bill Hartman, Mike Boyle, and I have written quite a bit about strategies “C” and “D.”

“B,” however, might be the one issue that nobody seems to cover, so I thought I’d toss out an analogy in this regard. Just think of what I’m doing with my pro pitchers right now. Most report to spring training at the end of February or early March.

Right now, they're all throwing bullpens (2x/week) at 75-80% intensity with only 30-35 throws a session (mostly fastballs, just a few change-ups, and no breaking pitches).  Meanwhile, they’re just doing some long tossing on three “off-days” per week to help get their arms back in shape gradually and facilitate recovery.

During these bullpens, they take their time between pitches. The idea is technical perfection and precision.The guys won’t hesitate to talk mechanics (or watch videos of the previous pitches) for a minute or two between throws.  Apparently, they sometimes spend this time conspiring on how to throw fastballs at their strength coach while he tries to get videos for them, too.

How do you think their mechanics would improve with going out there and throwing 90mph+ every day from the get-go? It probably wouldn’t do much, and chances are that they’d chew up a shoulder, elbow, lower back, or knee in the process – either from faulty mechanics, excessive loading of tissues too early, or a combination of the two.

Now, why should improving deadlift technique be any different? As your “bullpen,” you do some technique work in the 75-80% range and keep it picture-perfect, adding 5-10 pounds a week.

Meanwhile, as your “long tossing sessions,” you do your assistance work (outlined above) and possibly some very light technique work to groove the movement pattern and facilitate blood flow.  Over time, these strategies bump that lift up.  Grinding against circa-maximal weights every week with poor technique won't get you anywhere except injured.

See you next week.


Read more

Off-Season Training Q&A

With the baseball playoffs (and associated late nights) wrapped up and my seminar schedule for 2007 winding down, it's time to put my nose to the grindstone and get a bit more writing done.  On that note, you can expect to see a new e-book from me in a few weeks (details to come soon) as well as the official release of my co-authored book with Matt Fitzgerald on May 5, 2008.  You can also check out some of the updated seminar dates for 2008 on my schedule page. With that said, let's get to the content; this weeks we're getting right to the content with a Q&A.

Q: I’ve seen both you and Kelly Baggett write a bit in the past about the static-spring continuum with respect to your work with basketball players; is this information also applicable to other athletes?  For instance, I know you work with a ton of baseball guys, and given that the Sox just won the World Series, it seems like a good time to ask how it would apply to such a population.

A: Sure; it’s definitely applicable to baseball – and pretty much every sport, in fact.  Believe it or not, I actually used baseball as the example in my Ultimate Off-Season Training Manual.  Rather than reinvent the wheel, here it is (with some add-ons at the end):

The modern era of baseball is a great example, as we’ve had several homerun hitters who have all been successful – albeit via different means.

At the “spring” end of the continuum, we have hitters like Gary Sheffield and Vladimir Guerrero demonstrating incredible bat speed.  The ball absolutely rockets off their bats; they aren’t “muscling” their homeruns at all.  Doing a lot of extra training for bat speed (beyond hitting practice) would be overkill for these guys; they’ll improve their power numbers by increasing maximal strength alone.

At the other end of the spectrum, we have “static” homerun hitters like Mark McGwire and Jeff Bagwell, both of whom were well known for taking weight training very seriously.  These guys are the ones “muscling” baseballs out of the ballpark; the ball almost seems to sit on the barrel of the bat for a split-second before they “flip it” 500 feet.  Getting stronger might help these guys a bit, but getting more spring by focusing on bat speed with upper body reactive training (e.g., medicine ball throws, ballistic push-ups, etc.) would be a more sure-fire means to improvement.  With them, it’s all about using their force quicker – and doing so with more reflexive contributions (i.e., stretch-shortening cycle).

Then, we have the “middle-of-the-road” guys like Barry Bonds and Manny Ramirez.  They possess an excellent blend of static and spring, so they need to train some of both to continue improving physically.

Bonds is actually a good example of how an athlete’s position on the static-spring continuum can change over the course of a career.  When he started out, he was definitely a “spring” guy, hitting most of his homeruns with pure bat speed.  As Bonds’ career progressed, his maximal strength improved due to neural adaptations and increased cross sectional area (more muscle mass).

In light of the media attention surrounding the use of performance-enhancing substances in baseball, I should mention how he increased his muscle mass isn’t the issue in question in the discussion at hand.  The point is that he did increase muscle mass, which increased maximal strength, which favorably affected performance.  The performance-enhancing substances question really isn’t of concern to this discussion.

Now, with all that said, you can take it a step further and present this to a sprinting discussion.

Strong guys are going to tend to try to muscle things when they sprint.  You’ll see longer ground contact times.  I’ve dealt with this myself as I attempt to transfer my powerlifting background to more sprinting.  I have to make a conscious effort to stay on the balls of my feet and think about how much force I put into the ground instead of just using my glutes and hamstrings to pull me forward.

Conversely, reactive guys have no problem minimizing ground contact time; they just don’t have the force to put into the ground in the first place.

If, however, you’re too weak on the whole to withstand the ground reaction forces that take place with sprinting (go to this recent newsletter for a little background on that), the static-spring discussion doesn’t really apply to you.  Get stronger, work on landing mechanics and technique, and you can think about it when the time is right.

Of course, the strength and reactive components of sprinting are just two pieces of the puzzle; you also need to consider dynamic flexibility, muscular balance, footwear, sprinting mechanics, body composition, and a host of other factors.

Just one last reminder that this week's sale ends at the end of the day today.  It includes:

Building the Efficient Athlete: Normally $199.99 Magnificent Mobility: Normally $49.99 The Ultimate Off-Season Training Manual: Normally $99.99 Rugged T-Shirt of your choice: Normally $14.99 Total Value: $364.96 + shipping from multiple locations (roughly $25-$45, depending on your location) Through Wednesday at midnight, however, this World Series Package will only be $249.99 + shipping and handling. All you need to do is go to the following link and place your order: http://www.1shoppingcart.com/app/netcart.asp?MerchantID=84520&ProductID=3848347 Be sure to tell us in the comments box whether you'd like the black or white shirt and what size you'd like (black is available in M, L, and XL, and white is available in L and XL).  You can check out the shirts at: http://ecressey.wpengine.com/products.html All the Best, EC Sign-up Today for our FREE Baseball Newsletter and Receive a Copy of the Exact Stretches used by Cressey Performance Pitchers after they Throw!
Read more

Strength and Conditioning for Combat Sports

We’ve got lot of exciting stuff this week, so let’s get right to it.  So much content, but so little time…

Impressive Results with Magnificent Mobility

This week on the forums, I accidentally stumbled upon one man’s journal of his results over the past 6-8 weeks with Magnificent Mobility.  It’s pretty cool stuff; check it out!

Magnificent Mobility Journal

You can pick up a copy at www.MagnificentMobility.com.

Product Review: Tap Out: Strength and Conditioning for Combat Sports

I don’t know about the rest of you, but I’ve got a ton of respect for mixed martial arts (MMA) competitors and wrestlers.  Whether you enjoy watching the sports or not (and I definitely enjoy them), you’ve got to give a ton of credit to guys for not only the guts it takes to compete, but also for the extensive training these sports mandate.

Unfortunately, there are a lot of guys out there who are spinning their wheels with the conditioning aspect of things, and they’re getting beaten like rented mules in competition as a result.  Fortunately for them (if they’re smart enough to know where to look), Jason Ferruggia came along and introduced Tap Out: Strength and Conditioning for Combat Sports.

Up until now, I’ve seen a bunch of products for grapplers, and to be honest, I haven’t seen one that has really impressed me.  Usually, they’re just a collection of exercises put together by some guy who used to wrestle or fight.  There are no guidelines.  There is no structure.  There is no systematic fluctuation of training stress.  There are no nutritional guidelines.  Very simply, there’s no system.

Now, if you were involved in a sport where you could potentially get knocked senseless, and you knew that training was crucial to your success, which avenue would you pursue?

Option A: A results-backed system, comprised of training, nutrition, and supplementation guidelines specific to the athlete, complemented by several information-packed bonus interviews with guys who have been successful MMA competitors in their own right.  It teaches you how to get stronger, faster, and leaner while avoiding injury and completely dominating your opponents.


Option B: Pictures of some dirty sweatpants-wearing, has-been wrestler showing you the same exercises his high school coach taught him back in 1984.  It teaches you how to be mediocre (at best) and, if you work really hard, how to get fat enough to protect your internal organs from the beatings you’ll take in the ring or on the mat because you didn’t train correctly.

Jason is Option A.  The guys following Option A are probably the ones who roughed you up last time around.  Don’t believe me?  Check out the testimonials, and while you’re at it, pick up a copy of Jason’s fantastic manual.

Exclusive Interview: Michael Stare

As you’ve probably already surmised by now, I’m always looking to meet new physical therapists who are effective at bridging the gap between healthy and injured athletes.  The sad truth is that just as there aren’t many trainers/coaches who really understand musculoskeletal dysfunction and the resulting pathology, there aren’t many PTs who really understand what an athlete puts his/her body through on a daily basis.

Let’s just say that I’m lucky to have found Mike Stare, and it’s just my luck that he’s right up the road from me here in Massachusetts.  Mike is a brilliant PT and trainer from whom you can expect to hear a lot more in the months and years to come; we’re already brainstorming on some projects together.  Here’s a small sample of the great information Mike has to offer; as I told Mike, I think it’s some of the best information we’ve had in any interview at EricCressey.com thus far.

EC: Hi Mike, thanks for taking the time to join us today.  Before we get cracking with the interview, could you tell us a bit about who you are, where you’ve been, where you are, and where you’re going?

MS: I’m a Physical Therapist and a CSCS, practicing with Orthopaedics Plus in Beverly, MA, as well as Director of Spectrum Fitness Consulting, also in Beverly.

My early years as an oft injured and undersized athlete landed me in the orthopedists’ office far too often.  After a serious neck injury from football, I found myself in Physical Therapy for several weeks.  That experience really opened up my eyes and I decided that I wanted to pursue a career as a PT.

I studied kinesiology at the University of Illinois, and began working as a personal trainer for the division of campus recreation.  I also worked with the spinal cord athletes there, and had an opportunity to travel to the 1996 Paralympic games to work with spinal cord injured athletes.

I moved East to pursue a Masters of Science in Physical Therapy at Boston University. I continued to work as a personal trainer with the Boston Sports Clubs and obtained the CSCS while I was in grad school.  I also had the opportunity to help develop and teach a training curriculum for the trainers at BSC.

After graduation, I worked in an outpatient rehab hospital where I saw the full spectrum of conditions.  I treated a C5 quadriplegic who was more athletic the most people I know, a lady who had both legs amputated from her pelvis (best pair of arms on a 60 year old I ever saw and a heart of gold), bodybuilders with overuse injuries, chronic low back pain - you name it – I saw it.  It was a phenomenal learning experience, but I knew that I needed to focus in order to hone my expertise.  So I choose to concentrate on orthopedics, and jumped on board with Orthopaedics Plus.

I returned to graduate school part-time while working full time as a clinician to finish my Doctorate in Physical Therapy, and then completed a two-year fellowship in orthopaedic manual therapy.  That was an invaluable experience; I learned from what I truly believe to be the greatest minds in Physical Therapy.

I had moved away from personal training while pursuing my post-graduate studies, and I really missed it.  As a clinician, I grew frustrated with the fact that many of my patients were seeing me for injuries or conditions that could have been prevented if they had received the proper training or education.  I thought I was going to lose my mind if I saw another 16-year-old girl with excessive genu valgum and the glute strength of a mosquito limping in after ACL reconstruction waiting to get back to her three soccer leagues.

I decided that I needed to provide a service that would not only help people recover from their injury, but also reduce their injury risk and enhance their performance and health. As a result, in partnership with Orthopaedics Plus, I formed Spectrum Fitness Consulting this past January.  We focus on providing personal training services, as well as sports conditioning for young athletes.  Our studio is located adjacent to the PT clinic, which facilitates me working as both a clinician and a trainer.

We are rapidly growing and have some excellent new programs coming soon.  I’m looking forward to finding some quality trainers to help us grow, as well as expanding our reach throughout the North Shore region, developing more of a web presence, and hopefully perform some research in the near future

For now, I’m trying to stay focused on getting things done right, keep my head from spinning off, and enjoy hanging out with my new baby and my wife as often as possible.

EC: The first chapter of your memoirs is now officially complete; congratulations!  Moving on…you’ve done quite a bit of research on preventing elbow injuries in young pitchers; what have you got for us?

MS: Last fall I had the opportunity to mentor a Doctoral Student from BU.  We found some great info about elbow and shoulder injuries in young baseball pitchers. Among some of the most notable findings:

·         Injuries in young pitchers most often involve the growth plates, as opposed to the rotator cuff, labrum, or ligaments commonly seen in adults

·         The growth plates are the weakest link in the joint complex in young pitchers.

·         Growth plates in the elbow are open until about 16 and until 19-22 in the shoulder.

·         Injury to the growth plate is very difficult to detect, except in severe cases. Thus, early and appropriate response to pain is critical.

·         Pitch counts and pitch types are associated with risk of elbow and shoulder injury. Researchers from the American Sports Medicine Institute (ASMI) have given specific recommendations for pitch type and count based on their findings.  For example, a sample of 476 9-14 year olds who threw curve balls had a 56% increased risk for shoulder pain and those who threw sliders had an 86% increased risk for elbow pain.  A sample of 330 9-12 year olds showed increased incidence of elbow and shoulder injury occurred with:

1) Those who threw >75 pitches/game or 600/season

2) Pitched in multiple leagues

3) Experienced arm pain during the season

4) Pitched less than 300 pitches per season.

EC: Very interesting; we often hear about throwing too much as being a problem, but some kids were actually having problems from not throwing enough pitches and then going out to “turn it loose?”  In other words, is that 300-600 pitches/season number precedent for a “golden pitch count rule?”

MS: No, I don’t consider it as a golden rule.  Rather, it should provide a basis from which coaches, clinicians, and researchers can begin to establish the boundaries between what is too much stimulus for a developing arm, and what is not enough stimulus to facilitate enhanced motor skill and optimal conditioning.

The research from ASMI and others is merely revealing initial data about factors that correlate with shoulder and elbow injury, not cause the injuries.  Pitch counts are a convenient way to quantify arm stress, but they are far from perfect.  The research regarding this topic is still very new and continues to evolve.  Pitch counts are just one of the many factors related to increased risk.

I think focusing on a firm pitch count for the season may be a problem in that it relieves the coaches, parents, etc., of responsibility of considering other variables that may also indicate increased risk, essentially, providing a false sense of security.

It still isn’t clear why pitching less than 300/season was associated with risk of arm injuries.  Perhaps those who threw less had less skill, and thus imposed greater stress upon their arms.  Maybe they were less conditioned.  Or perhaps, as you mentioned, they progressed their volume of throwing too quickly.  The higher risk with throwing greater than 600 seems more obvious – perhaps it was just too much?

Regardless, I think the problem is not simply about too many pitches or too few pitches in games over the season.  There seems to be a trend towards kids playing in less informal settings, and more often in competitive settings.  This has some significant implications.  Less informal play means less opportunity for honing the motor skill of throwing.  Motor learning is best developed by practicing frequently, in small chunks of time, at initially lower intensities.  This is what is typically done through informal play.

There is a big difference between how you throw in a competitive game situation versus while practicing or playing catch with friends.  Thus, kids are in more frequent situations that place higher stresses on the arm, while spending less time improving their motor skills.  Given this trend, I think it becomes clear why the incidence of arm injuries is one the rise.

Improving their conditioning and responding to the early warning signs of injury would substantially offset this higher risk.  Combined with coaches focusing more on teaching the skill of throwing, while gradually increasing the volume and intensity of throwing, the incidence of arm injuries could be greatly reduced.  Rather than just focusing on the pitch count, I suggest coaches and parents also simply rate velocity and control each inning, as well as observe any other signs of a change in mechanics or taking more time between pitches.  This will be more effective than just quantifying pitch count.

EC: Great stuff – sorry to interrupt.  What else have you got?


·         Certain flaws in pitching mechanics will predispose the shoulder or elbow to greater stress. For example, excessive shoulder rotation at initial contact of the stride leg, and a more cross body horizontal arm follow-through leads to increased torque on the elbow.

·         The humerus rotates up to 7000 degrees per second in from late cocking phase to acceleration phase, and the arm experiences a distraction force of up to 1.5 the athlete’s bodyweight during the deceleration phase

·         Clinicians and surgeons are reporting a 5-6 fold increase in pitching related elbow and shoulder injuries in youth pitchers.

I’ve seen too many kids devastated by realizing that their throwing careers are over at age 15, recovering from their second arm surgery. There’s too much information out there; we need to apply it.

EC: Agreed!  So why aren’t more trainers and coaches putting this information into practice?

MS: Although we found some great info about kinematics, kinetics, and epidemiology, there was very little information about conditioning or training strategies. It was implied by almost every researcher, but never thoroughly discussed. That is were my “Young Guns” program comes in.  Our program will be the only that I’m aware of that will emphasize not only the preventative strategies via pitch count, pitch type, and throwing mechanic alterations, but also implement specific conditioning strategies.  As with so many other conditions, the ability to generate and translate force through out the entire kinetic chain, as well as efficiently decelerate, correlates with improved performance and reduced injury.  I think this reasoning applies perfectly to throwing athletes, and they should be trained accordingly.

EC: Great stuff; I’m sure it’ll be fantastic.  How about correcting injuries once they’re in place?  Any rehab tips for those who already have bum elbows?

MS: The injured tissue must be identified first. This is especially important for young athletes, as growth plates are particularly vulnerable.  Treating a growth plate injury will be much different than treating a lateral epicondylopathy.  Seeing an orthopedist who specializes in elbows and shoulders – together with a PT with a manual therapy background – is your best bet.

Next, identify the cause of the problem. It’s always easier to investigate a crime closest to when it was committed.  The irritating factors must be modified or avoided.

Look at the shoulder, thoracic spine, and hips for mobility deficits.  Inadequate mobility at any of the joints along the kinetic chain can result in greater compensatory mobility demands upon the more vulnerable elbow joint, leading to excessive strain and ultimately injury.

If soft tissues of the elbow are involved, such as is the case with tendonopathy of the common extensor (lateral epicondylopathy) or common flexor (medial epicondylopathy) tendons, deep tissue massage is very effective.  It doesn’t feel so good initially, but it works.  Usually, you can do it yourself; just follow the tendons starting about ½ inch from the origin, and deeply massage with small amplitude parallel and perpendicular to the tendons.

Joint mobilization is also very effective at restoring normal mobility and promoting joint healing – but you’ll need a skilled therapist for that.

For less acute injuries, very high repetition, low load exercise can be effective at improving tensile qualities and promoting healing.

The common practice of applying ice shouldn’t be overlooked.  Ice massage is very easy and effective.  Freeze water in a Dixie cup, peel back the edges, and rub the effected area for about 5-10 minutes.

EC: My favorite part is that you never recommended non-steroidal anti-inflammatory drugs (NSAIDs).  We know we’re dealing with degenerative, not inflammatory conditions, so these interventions have little merit aside of pain relief, which is better accomplished with ice anyway.  All those NSAIDs are just inhibiting the healing process and giving people a false sense of good health, leading them to throw the tissue back into the fire much too soon.  Would you agree?  (You’re not allowed to disagree, for the record; this is my newsletter!)

MS: I absolutely agree, and not just because I fear being chastised like your friend Hugo from a few newsletters ago!  Soft tissue injuries have often been labeled as tendonitis, the –itis suffix inferring an inflammatory pathology.  However, histological studies consistently fail to find markers indicative of inflammation with these conditions, leading to the increasing use of the appropriate term tendonopathy instead.

This is more than a semantics issue.  As you mention, taking an anti-inflammatory to treat something that does not have an inflammatory pathology may yield unnecessary risks and hinder healing.  Recent research has demonstrated impaired bone healing in conjunction with NSAID usage.  This is particularly important if bone pathology is suspected, as often is the case with young pitchers having a high incidence of growth plate injuries

EC: This has been fantastic stuff, Mike; thanks for taking the time.  Where can our readers find out more about you?

MS: It’s my pleasure Eric, anytime. I can be reached at mike@spectrumfit.net, and your readers can learn more about Spectrum Fitness Consulting, the Young Guns program, and myself at www.spectrumfit.net.

That’ll do it for this week, everyone.  Keep an eye out for some exciting news in the next few days…

All the Best,

EC Sign-up Today for our FREE Baseball Newsletter and Receive a Copy of the Exact Stretches used by Cressey Performance Pitchers after they Throw!
Read more

Pressing and the Overhead Athlete

Many of you are going to hate me for what I’m about to say. I don’t let my overhead throwing athletes overhead press or bench press with a straight bar. There. I said it. Call me all the names you’d like but ask yourself this: “Am I cursing Eric’s name because I think that the cost-to-benefit ratio of overhead pressing and straight bar bench pressing justifies their use, or is it because I feel naked without these options? I have to bench press. I can’t start an upper body day with any other exercise.” Continue Reading... Sign-up Today for our FREE Baseball Newsletter and Receive a Copy of the Exact Stretches used by Cressey Performance Pitchers after they Throw!
Read more

The Round-Up Interviews: Eric Cressey

It's time to play catch-up with the T-Nation authors. Nate Green does the asking, and in this case Eric Cressey does the talking. Continue Reading... Sign-up Today for our FREE Baseball Newsletter and Receive and Receive a Copy of the Exact Stretches used by Cressey Performance Pitchers after they Throw!
Read more
Page 1 80 81 82