Home Baseball Content (Page 67)

EC Talks Transfer of Training for Baseball Players

Back in July, I presented at the NSCA National Conferences in Providence, RI.  My topic was "Individualizing the Management of Overhead Throwers: How to Spot What Your Throwers Need."  The NSCA films all the presentations, and this excerpt was just made available online, in case you'd be interested in checking it out. You can access this video HERE. A special thanks to the NSCA for making this available online.

Sign-up Today for our FREE Newsletter and receive a four-part video series on how to deadlift!

Name
Email
Read more

Pitching Injuries and Performance: Understanding Stride Foot Contact and Full External Rotation

At the end of the day yesterday, I took a quick glance at my Facebook feed and was quickly drawn to a "highlight" video from a baseball strength and conditioning program.  The athletes' energy was great, and there was a ton of camaraderie.  The only problem was that if you had watched the video without first seeing the word "baseball" in the title, you would have never known it was a baseball team training. The exercises - and the way that they were/weren't coached - clearly didn't reflect the unique demands of the sport.

With that in mind, I thought I'd use today's post to quickly highlight the most important positions you need to understand when you're training throwing athletes: stride foot contact/full external rotation.

Stride foot contact occurs just before maximum external rotation takes place.  As the foot touches down, the pelvis has started rotating toward home plate while the torso is still rotated in the opposite direction to create the separation that will enhance velocity.  Maximum external rotation - or "lay-back" - signifies the end of this separation, as the energy generated in the lower extremity is already working its way up the chain.  Nissen et al. (2007) presented this tremendous diagram to illustrate the separation that takes place.  This image represents a right handed picture, where the top image is the hips, and the bottom image is the torso (right and left shoulder joint centers of rotation).

Source: Nissen et al.

Based on this image alone, you should be able to see where most oblique strains and lower back pain originate; this is ridiculous rotational stress.  Additionally, you can appreciate why hip injuries are higher in throwers than they ever have been before; it takes huge hip rotation velocities to play "catch up" so that the pelvis and thorax are squared up at maximum external rotation (if they aren't, the arm drags).  This just refers to what's happening at the lower extremity and core, though.  Let's look at the shoulder.

At full lay-back (maximum external rotation), we encounter a number of potentially traumatic and chronic injuries to the shoulder.  In a pattern known as the peel-back mechanism, the biceps tendon twists and tugs on the superior labrum. The articular side (undersurface) of the rotator cuff may impinge (internal impingement) on the posterior-superior glenoid, leading to partial thickness cuff tears. Finally, as the ball externally rotates in the socket, the humeral head tends to glide forward, putting stress on the biceps tendon and anterior ligamentous structures. 

Likewise, at the elbow, valgus stress is off the charts.  That can lead to ulnar collateral ligament tears, flexor/pronator strains, medial epicondyle stress fractures, lateral compressive injuries, ulnar nerve irritation, and a host of other isssue.  I don't expect most of you to know what much of this means (although you can learn more from Everything Elbow), but suffice it to say that it's incredibly important to train throwers to be functionally strong and mobile in these positions. 

And, this brings to light the fundamental problem with most strength and conditioning programs for overhead throwing athletes; they commonly don't even come close to training people to be "safe" in these positions. "Clean, squat, deadlift, bench, chin-up, sit-up" just doesn't cut it.  You need to be strong in single-leg stance to accept force on the front side with landing.

You need to be able to apply force in the frontal and transverse planes.

You also need to transfer this force to powerful movements.

You need to have plenty of rotary stability to effectively transfer force from the lower to upper body.

You need to be strong eccentrically in the 90/90 position.

You need to have outstanding hip mobility in multiple planes of motion.

You need to attend to soft tissue quality in areas that other athletes rarely have to consider.

These demands are really just the tip of the iceberg, though, as you have to see how all the pieces fit together with respect to throwing and hitting demands at various times of year.  Training for baseball isn't as simple as doing the football strength and conditioning program and then showing up for baseball practice; there are far more unique challenges when dealing with any rotational sport, particularly those that also integrate overhead throwing.  Watch the sport, talk to the players, appreciate the demands, and evaluate each individual before you try to write the program; otherwise, you're simply fitting athletes to existing programs.

For more insights like these, I'd encourage you to check out one of our Elite Baseball Mentorships; we have two of these events scheduled for this fall.

Sign-up Today for our FREE Baseball Newsletter and Receive Instant Access to a 47-minute Presentation from Eric Cressey on Individualizing the Management of Overhead Athletes!

Name
Email
Read more

11 Random Thoughts on Baseball Strength and Conditioning

With the off-season at hand, I thought I'd type up some random thoughts that have come up in conversations with professional, college, and high school players over the past few weeks as they've wrapped up their seasons and transitioned to off-season mode.

1. Arm care drills don't really provide arm care when you do the exercises incorrectly. When you do eight exercises for three sets of 15 reps each every single day, but you do all the exercises incorrectly, you’re really just turning yourself into 360 reps worth of suck.

2. Piggybacking on #1, if you think you need 360 reps of arm care exercises per day, you really need to educate yourself on how the arm actually works. Also, when you eventually realize that you probably don’t even need ¼ of that volume to keep your arm healthy, you should definitely pick up a new hobby with all that newly discovered free time. Maybe you’ll even wind up kissing a girl for the first time.

3. In the battle to increase pitching velocity, all anyone seems to talk about is how to increase arm speed, which is a function of how much force can be produced and how quickly it can be applied.  So, we focus heavily on long toss, weighted ball programs, and mound work to try to produce more force.  The inherent problem with this strategy is that it ignores the importance of accepting force.  I'll give you an example.

Imagine two people side-by-side holding slingshots, each of which has the same thickness rubber band.  They both pull the band back with the right hand and hold the other end with the left. One guy has a limp left hand and his left forearm "gives" as he pulls the band back, and the other guy keeps the left side firm.  They both shoot the rock; which one goes farther?  Obviously, it's the one with the firm front side; that stiffness enables the arm to accept force.

This is a common problem with many young pitchers who haven't built a foundation of strength, as well as advanced pitchers whose velocity dips over the course of a season, usually when they lose body weight. If your lower-body strength and power diminishes, you'll collapse on that front side and leak energy.  And, you'll commonly miss up and arm side. 

Basically, you need to be strong eccentrically into hip flexion, adduction, and internal rotation - which is why the glutes are so important for pitching (check out this post from a while back for more information on the functional anatomy side of things).  Think of pitching with a weak landing leg as throwing like a guy with a slight hamstrings strain; in order to protect yourself, you flop instead of planting.

4. Has an accomplished marathoner every thrown 95mph? Actually, has an accomplished marathoner ever done anything athletic other than running?

5. We definitely need to get John Clayton to cover MLB instead of the NFL.

Baseball hasn’t seen this kind of talent in a non-player since this Fenway Park security guard put the Terry Tate on this deserving schmuck:

6. It amazes me how many baseball players don’t take care of their eyes. They are your livelihood, people! Yearly check-ups are a good start, but if you’ve heard some of the stories I’ve heard about how terrible guys are with taking care of their contact lenses, you’d be astounded. Example: I once had an athlete come in with terribly red eyes, so I sent him to see my wife, Anna, who is (conveniently) an optometrist. He informed her that he’d been putting his contacts in the same solution at night for two weeks. That’s like reusing the same bath water for 14 days – except the eyes are worse because they’re more prone to infection.

7. Why do professional teams spend anywhere from $484,000 to $30,000,000 per year on a single player, yet try to save money by letting clubbies feed all their minor leaguers pizza, fried chicken, PB&J, and salami sandwiches on white bread?

8. This kid has a full scholarship to train at Cressey Performance whenever he opts to pursue it.

See what I just did there? It wasn’t baseball-related at all, but I just tied it in.

9. Strength and conditioning has “changed the game” with respect to early sports specialization as it relates to baseball development. Kids can get away with specializing earlier if they’re involved in a well-rounded strength and conditioning program because these programs afford as much and, sometimes, more variety than playing a traditional sport. This approach to development does, however, depend heavily on the self-restraint of players, parents, and coaches to get kids 2-3 months per year without a ball in their hands. And, they need to seek out opportunities to play pick-up basketball, ultimate Frisbee, and other random games.

10. If you’re already taking 150 ground balls per day during the season, do you really need to do extra agility work? This is like a NASCAR champ hitting up the go-karts on the way home from the race track.

11. The other day, I read a review in the International Journal of Athletic Training that focused on the different biomechanics and pathology of various pitching styles.  The authors (Truedson et al) made a strong case for modifications to training programs - particularly with respect to core stability - based on trunk tilt angles at ball release.  Overhand and three-quarters guys tilt away from the throwing arm, sidearm guys stand upright, and submarine guys tilt toward the throwing arm. Folks have long discussed the concept of posture from a mechanics standpoint, but I haven't seen anyone who has utilized this information to modify an intended training outcome from a strength and conditioning standpoint.  Obviously, you could easily make the case that submarine pitchers need more rotary and lateral core stability than all other pitchers.

Lateral core stability exercises teach you how to resist lateral flexion; in other words, your goal is to avoid tipping over. These drills may start with basic side bridging drills and progress all the way up through more advanced TRX drills and 1-arm carrying variations. Rotary core stability exercises educate folks on how to resist excessive rotation through the lumbar spine. Examples include drills like landmines, lifts, and chops.

Sidearm pitchers are much more upright with the torso, so they likely need more anterior core than rotary/lateral core stability.  Of course, you're still going to train all three.

Anterior core stability exercises teach the body to resist excessive lumbar spine extension, and encompass a variety of drills, starting with dead bug, curl-up, and prone bridging activities. In prepared individuals, they progress all the way up through more advanced exercises like reverse crunches, stability ball rollouts, and TRX flutters and fallouts.

Finally, the overhand and 3/4 guys - which are obviously the largest segment - likely just need an equal dose of the three approaches.

For more thoughts on core stability training for health and performance, I'd encourage you to check out our Functional Stability Training DVD set.

That concludes this little glimpse into my mind as we enter the off-season.  I'll probably wind up doing this again every 4-6 weeks as I have discussions on various topics with our pro guys as they return.

Sign-up Today for our FREE Baseball Newsletter and Receive a Copy of the Exact Stretches used by Cressey Performance Pitchers after they Throw!

Name
Email
Read more

Cressey Performance Facility Tour

I thought you all might be interested in a tour of the new facility, which opens up today.  A special thanks goes out to all the CP staff members and clients who helped out with the big move.

For those interested, we'll be hosting the first annual Cressey Performance Fall Seminar here at the facility on October 28th.  Click here for more information

Sign-up Today for our FREE Newsletter and receive a four-part video series on how to deadlift!

Name
Email
Read more

Should Pitchers Distance Run? What the Research Says.

Today's guest blog comes from current CP intern, Rob Rabena.  Rob recently completed his master's thesis research on the effects of interval training versus steady state aerobic training on pitching performance in Division 2 pitchers.  He's in a great position to fill us in on the latest research with respect to the distance running for pitchers argument.

“Ok, guys, go run some poles.”

A baseball coach often voices this phrase during the season to keep his pitchers in shape. Utilizing distance running to enhance aerobic performance among pitchers has always been the norm, but do the risks outweigh the rewards? There is strong evidence in the scientific literature to support that coaches should rethink utilizing distance running with their pitchers.

Jogging Might Not be the Answer

The current practice utilized for conditioning is for pitchers is to go for a long run the day after a game to “flush” the sore arm of lactic acid, or minimize muscle soreness to recover faster for the next game. These theories are not supported by the current literature and the physiology of the sport.

In the current research study examining the physiology of pitching, Potteiger et al. (1992) found no significant difference between pre-pitching and post-pitching blood lactate levels of six college baseball players after throwing a 7-inning simulated game. Even though during an inning there is a slight lactate production of 5.3-5.8 mM, (which is not high, considering resting lactate is 1.0mM), it does not cause a buildup of lactic acid in the arm of a pitcher after a game. As a comparative example, a high lactate response would occur from squatting for multiple reps at about 70% 1RM; this might produce a lactate level of about 8-10mM (Reynolds et al., 1997). Furthermore, jogging to flush the arm of lactic acid after a start is unnecessary and not supported by the literature, especially since we learned all the way back in 2004 that lactate was not the cause of muscular fatigue ; even the New York Times reported on this in 2007! A lot of coaches simply haven't caught wind yet - in spite of the fact that exercise physiology textbooks have been rewritten to include this new information.

Should Pitchers Distance Run?

When a person jogs at a pace where he/she is able to hold a conversation (at or below ventilatory and lactate threshold), the goal is to improve V02 and to enhance aerobic performance. For pitchers, this practice is utilized to enhance and maintain endurance during games, as well as to maintain body composition throughout the season
In the research study conducted by Potteiger et al. (1992), the researchers found that mean V02 only reached 20 ml. kg.min during the simulated game, and returned to 4.9 ml.kg.min between innings (resting is 3.5 ml.kg.min). The V02s of endurance athletes are approximately greater than or equal to 60 ml.kg.min. Based off this study, V02 does not seem to be a limiting factor for pitchers who want to pitch deep into games. Since a high V02 does not make a great pitcher, why are we training like an endurance athlete, when pitching relies predominately on the anaerobic system? While jogging may help you with body composition and endurance, it’s not going to help you throw more innings in a game. Our emphasis should be on building strength and speed, which are more anaerobic qualities.

Endurance Running or Sprints?

Still not convinced that sprint or anaerobic training is right for your pitching staff? Okay, coach, here are a few more studies comparing sprint training to aerobic training and their effects on pitching performance.

One study examined dance aerobic training (yes, dance training) to sprint training in baseball pitchers and found a significant improvement (p<0.05) in the pitching velocity and anaerobic power measures of the sprint groups (Potteiger et al., 1992).

In a similar study that compared sprint training and long, slow distance running in-season, Rhea et al. (2008) found a significant increase in lower body power for the sprint group, and a drop in power for the distance group. Do we want our pitchers dropping in lower body power? I don’t think so!  Would you like to see their power production increase? Absolutely!

My Research

My Master’s thesis, “The Effects of Interval Training on Pitching Performance of NCAA Division II pitchers”, examined the in-season steady state exercise and interval training on pitching performance. Prior to collecting data, I hypothesized that I was going to find a significant difference in pitching velocity, WHIP (walks+hits/innings pitched), 30m sprint time, fatigue index and muscle soreness.

The results of my thesis study found no significant difference (p>0.05) in any of the hypotheses. However, there was a very strong trend (p=.071) for the distance training group presenting with more soreness based off a 0-10 scale. The distance group did not drop in velocity, get slower, or decrease pitching performance like the previous studies suggested. When examining the results of my thesis study with the current literature, I continue to question if there is an appropriate place and time to implement distance running for pitchers within a training cycle, and if so, when would it be most efficient to do so?

Now What Do We Do?

Most of the research available supports that assertion that pitchers should stop distance running or not make it a focal point of their baseball strength and conditioning program. Distance running trains the aerobic energy system, where pitching is purely anaerobic in nature. I’m not totally bashing distance running because it does have its benefits for certain populations, just not for the performance goals of pitchers.

Now that we know what we shouldn’t be coaching, what should pitchers be doing for conditioning instead of running poles during practices? There are few things to consider when designing sports specific conditioning for pitchers:

● What should the rest periods be between sprints?
● What distances should pitchers sprint?
● How many days a week should pitchers actually condition, and does this fit into the overall training program?

The time between pitches is 15-20 sec (Szymanski, 2009), or longer for guys who are known for working slow on the mound. This can really help coaches when implementing interval sprints. Based off research and my time spent at Cressey Performance, anything 40 yards and under for 4-8 sprints, 2-3x a week is recommended. This, of course, depends on time of year (in-season vs. off-season). At the end of a workout, if the equipment is available, a lateral sled drag, farmers’ walks, or sledge hammer hits are always a plus to increase the anaerobic energy systems, which for a pitcher are most important.

Training pitchers out of the sagittal plane is another key consideration often overlooked with training baseball players; for this reason, using rotational medicine ball exercises is extremely valuable. Check out this study by Szymanski et al, (2007), which compared a medicine ball and resistance training group to resistance training only. Researchers found an increase torso rotational strength for the medicine ball group.

This explains why med balls are a great option for baseball players to not only develop rotational power, but also to blow off some steam. With that in mind, during a movement/conditioning day for pitchers, exercises like band-resisted heidens and lateral skips should be incorporated, along with the more traditional straight sprints mentioned above.

Conclusion

Based off the literature, long distance running should not be implemented for pitchers. When it comes down to it, a well-developed training program that incorporates strength, movement and conditioning is the most efficient way to enhance the way your athlete moves and plays on the field.

Thank you for reading. Please feel free to leave comments below, as this is the start of a process and something that coaches need to further consider and discuss to improve the efficiency of the conditioning programs for pitchers.

About the Author

Rob Rabena M.S., C.S.C.S, is a strength and conditioning coach who is currently interning at Cressey Performance. Rob recently earned his M.S. in Exercise Science with a focus in Strength and Conditioning. Prior to his graduate work, Rob obtained his B.S. in Exercise Science with a focus in Health Promotion from Cabrini College in 2011. Although Rob has a particular interest and experience with coaching collegiate athletes, he also enjoys working with clientele of diverse backgrounds and dictates his coaching practice to making his clients feel great, both physically and mentally, while placing a strong emphasis on the specific goals of the client. Feel free to contact Rob Rabena directly via email at robrabena@gmail.com.

Sign-up Today for our FREE Baseball Newsletter and Receive a Copy of the Exact Stretches used by Cressey Performance Pitchers after they Throw!

Name
Email

References

1. Fox EL. Sports Physiology (2nd ed). New York, NY: CBS College Publishing, 1984

2. Potteiger, J., Blessing, D., & Wilson, G. D. (1992). The Physiological Responses to a Single Game of Baseball Pitching. Journal of Applied Sport Science Research , 6, 11-18.

3. Potteiger, J., Williford, H., Blessing, D., & Smidt, J. (1992). The Efect of Two Training Methods on Improving Baseball Performance Variables. Journal of Applied Sports Science Research , 2-6.

4. Reynolds, T., Frye, P., & Sforzo, G. (1997). Resistance Training and Blood Lactate Response to Resistance Exercise in Women. The Journal of Strength and Conditioning Research , 77-81.

5. Rhea, M., Oliverson, J., Marshall, G., Peterson, M., Kenn, J., & Ayllon, F. (2008). Noncompatibilty of Power and Endurance Training Among College Baseball Players. The Journal of Strength and Conditioning Research , 230-234.

6. Szymanski, D. J. (2009). Physiology of Baseball Pitching Dictates Specific Exercise Insensity for Conditioning. Journal of Strength and Conditioning , 31, 41-47.

7. Szymanski, J., Szymanski, J., Bradford, J., Schade, R., & Pascoe, D. (2007). Effect of Twelve Weeks of Medicine Ball Training on High School Baseball Players. The Journal of Strength and Conditioning Research , 894-901.

8.Torre, J., & Ryan, N. (1977). Pitching and Hitting. NJ: Prentice-Hall Inc.

Read more

Body Weight, Throwing Velocity, and Pitching Injuries: Interesting Parallels

This morning, my good friend (and fellow baseball aficionado) Lou Schuler posted the link to an article that compared mortality rates in football players and baseball players. If you'd like to check it out, you can do so HERE.

One thing the article showed that I found very interesting was the rapid physical development of the average MLB player.  In 1960, the average player was 72.6 inches and 186 pounds, which is actually surprisingly comparable to what one might expect of the prototype male model for a magazine (I'd call this a weighted average of the skinny Abercrombie types and the more athletically-built Men's Health guys).  In 2010, however, those numbers had shifted to 73.7 inches and 208.9 pounds.  For those curious about what it looks like in a jersey, this was right about the height/weight of CP athlete and Orioles utility man Ryan Flaherty when he got to spring training this year:

Height had increased relatively linearly over the course of the 40 years, presumably as teams scouted and selected taller players and the game increased in popularity, drawing better athletes to the sport. Weight, on the other hand, made a rapid surge (+18.5 pounds) in the fifteen years between 1995 and 2010 (and +20.9 pounds between 1990 and 2010).  You'd expect a small increase alongside average height improvements, but this jump can only be explained by the increased emphasis on strength and conditioning (which was obviously aided by the steroid era for quite some time).

I don't think the results of this study are all that awe-inspiring - that is, until you look at them alongside some other numbers in baseball over the past decade.  As Jayson Stark discussed in his outstanding article, The Age of the Pitcher and How We Got Here, pitchers have dominated more and more over the past ten years. Check out these 2000 vs. 2011 changes Stark highlighted in his article:

Runs Scored: 24,971 vs. 20,808
Home runs: 5,693 vs. 4,552
 
Then, between 2006 and 2011:

Average ERA: 4.53 vs. 3.94
Strikeouts Per 9 Innings: 6.6 vs. 7.1

Perhaps most telling is the fact that between 2007 and 2011, the number of MLB pitchers with an average fastball velocity of 95mph or higher increased from 11 to 35.  When velocities are jumping like that, it's hard to say that the improved pitching performances are just due to the fact that guys are introducing better secondary pitches (most notably cutters), or that hitters are falling off because they're off the sauce.  Pitchers are getting more dominant.

I understand Stark's point that hitting has declined considerably in recent years as strikeout totals have piled up and batting averages have plummeted. However, I'm not really interested in debating whether offense is falling off because pitchers are getting better or because hitters are getting worse, because it's obviously a combination of the two.  However, what I think is a hugely valuable takeaway from this is that increased body weight is once again associated with increased pitching velocity.

Can you throw hard without being heavy?  Absolutely; many guys do it.  Would many of these already-elite slighter-framed MLB pitchers benefit from increases in body weight?  In many cases, yes - assuming the changes in body weight are gradual, accompanied by strength/power gains, and properly integrated with their existing mechanics.  While a gain of ten pounds seems like a huge deal to most pitchers, the truth is that it's actually a trivial amount of muscle mass over an entire body.  Have a look at this picture of 5lbs of muscle vs. 5lbs of fat that's floated around the internet for a while now:

Now, imagine spreading two of the red masses on the right over the course of an entire body; you would barely notice they're there, especially on the average MLB player, who is almost 6-2.  I guarantee you that if you hide one of those in each glute, you're going to see some big velocity gains, regardless of who you are.

Of course, every action has a reaction.  While you'll be more successful if you throw harder, you'll also be more predisposed to arm injuries. It should come as no surprise that the number of Tommy John surgeries has gone sky-high as more and more guys have blown up radar guns (and scales). Run fast and you're more likely to pull a hamstring.  Drive your car fast and you're more likely to crash.

Lots of people are quick to hop on board the "all injuries are due to bad mechanics" bandwagon, but the truth is that a lot of injuries are due in large part to the fact that a lot of guys are throwing really, really hard nowadays.  And, taking it a step further, they were usually throwing pretty hard at a young age - and on five different teams, in front of 150 radar guns at each game, with absurd pitch counts, while jumping from showcase to showcase, while playing year-round without a quality baseball strength and conditioning program and arm care routine in place. The truth is that all injuries are multi-factorial, and we have to control what we can control with an athlete, especially when we first interact with that player after years of mismanagement.

 

Sign-up Today for our FREE Baseball Newsletter and Receive a Copy of the Exact Stretches used by Cressey Performance Pitchers after they Throw!

Name
Email
Read more

Developing Baseball Power: What the Latest Research Says

Back in my What I Learned in 2010 feature, I made the following observation:

Babe Ruth hit a ton of homeruns in spite of being a seemingly out-of-shape fat guy. I've seen more than dozen pitchers throw well above 90 mph without even being able to vertical jump 23 inches.

What gives? Well, these athletes are just incredibly efficient – and powerful – in the transverse and frontal planes. Would being an elite sprinter make one a successful hitter or pitcher? Of course not, yet most strength and conditioning coaches train their rotational sport athletes as if they were trying to elevate them to elite status in a sagittal-plane dominant sport. They assume that general exercises like squats, deadlifts, and Olympic lifts will simply carry over once an athlete starts throwing or hitting.

And, to some degree, they do carry over because of the involved structures and systemic training effect, but I think that there's a way to tighten up the learning loop.

People think I'm crazy when I say that we don't Olympic lift our baseball players. We also don't do much vertical jumping. At the end of the day, jumping high doesn't really matter that much. Rotating fast and moving laterally quickly does, though, so we focus our power-oriented work on rotational medicine ball drills and lots of laterally-directed jumping/landing, and supplement it with lifting and sprinting.

I reiterated these thoughts a few weeks ago with my post, Why Baseball Players Shouldn't Olympic Lift.  This kicked off some heated debates, so I thought I'd contact Graeme Lehman for an interview on the topic.  As a brief background, back in 2010 - just a few months after I had the aforementioned article published - Graeme informed me that he was actually in the process of researching this very topic for his master's thesis.  Today, we're fortunate to have him here to discuss his findings and their practical applications.

EC: Thanks for agreeing to do this interview, Graeme. Can you start off by telling me a bit about both your baseball and educational backgrounds?

GL: First of all, thank you for asking me to do this interview; it is an honor to be a guest on your site, which I have used as an educational resource for years.

Baseball has always been my sport of choice despite growing up in Edmonton, Alberta during the 80s with the best hockey team ever assembled playing in my back yard (five Stanley Cups in seven years). I was fortunate enough to secure a scholarship to play baseball in North Dakota, but the school I attended didn’t have a kinesiology program, so I chose the major that I thought would afford me the best chance of getting a job, a degree in business administration. Ironically, and perhaps fatefully, my business degree got me a job as the manager of a small personal training studio. One day a trainer didn’t show up and I was thrown into the fire.

This first experience in a strength coach setting fueled a new found desire to educate myself about the world of exercise science. I read everything I could get my hands on including all of the articles that guys like you, Mike Robertson, Chad Waterbury, Mike Boyle wrote for T-Nation. I was hooked, and in 2006, I became a CSCS, and just one year later I was enrolled in a graduate school at the Memorial University of Newfoundland in Dr. David Behm’s Kinesiology program.

Since my collegiate days in ND, I have been both a baseball coach and strength coach for various individuals and teams including two years as the S&C for the UBC Thunderbirds. I have also continued playing in various men’s leagues in order to test out my own theories and keep chasing the dream hoping to become the next Jim Morris.

In case you’re trying to follow along with the various places I lived, they were:

1- Edmonton, Alberta (cold)
2- Jamestown, North Dakota (cold & windy)
3- St. John’s, Newfoundland (cold, windy and wet)
4- Vancouver, British Columbia (wet)

Living in these less than ideal climates has really made me excited about the work you do and the results you get in snowy Hudson, Massachusetts.

EC: How did you wind up deciding to pursue this research study, and what was the hypothesis that you were testing?

GL: My initial reasoning was quite simple: I wanted to help baseball players throw harder. As a strength coach, I thought that improving lower body power would be one of the best ways to achieve this goal. This led me to question: “what kind of lower body power can be improved in order to have a better chance of carrying over from the weight room to the baseball diamond?”

In the past, scores from traditional tests like vertical jump, broad jump and 60-yard dash times have not had any significant correlation to throwing velocity (Spaniol 1997). This made some sense because I have known some guys that I wouldn’t call “athletic” but could still throw gas. Mechanics obviously play a huge roll, but there is some research that stress’ the importance of lower body power in creating throwing velocity.

MacWilllams et al. (1998) showed that higher levels of force production by the back leg in the direction towards the plate led to higher wrist/ball velocity. While Matsuo et al. (2001) showed that what happens to a pitchers front knee between the time the front foot hits the ground and the time the ball is released is the key differentiator between “low” and “high” velocity throwing groups. Those that had the ability to extend their knee rather than going into further flexion threw harder.

So, it’s pretty easy to see that each leg is performing independent actions in a number of planes which don’t carry over to traditional bi-lateral sagittal. Thus, the principal of specificity was not taken into account and I know from your research, Eric, that you hate it when this principal is ignored.

It became obvious that we should be including tests which look at independent leg action, different planes of motion along with different kinds of strength (concentric, isometric, isometric).

EC: What kind of subjects did you have participating in the study, and what challenges did you face in dealing with them?

GL: My subjects were all male college level baseball players from two different teams. In total, I had 42 subjects who were approximately 19.8 years old and 183.3 cm tall and weighed 83.1 kg.

The biggest challenge was to create a list of tests which covered a wide spectrum of lower body power qualities to complement traditional running and jumping tests, which I also included. Each test also had to be easily reproduced by any strength or baseball coach in order to make this information user-friendly.

EC: Please describe your methods and the results you attained.

GL: We split up the athletes into left and right handed subjects and we measured throwing velocity was in two ways:

(1) Stationary throwing - similar to a pitcher throwing from the stretch.
(2) Shuffle approach - similar to a third basemen making a strong throw across the diamond.

This gave us four different groups. The throwing velocities from each group were correlated against the results of each lower body power test along with height and weight, looking for any significance. While there were was some correlation to body weight and med ball throws in one or two of the groups, only one test batted 1.000: the lateral to medial jump. This was the only test that was performed in the frontal plane.

Here is what this test looks likes. Stand on one leg then jump towards your midline in the frontal plane. Land with both feet together at the same time and take the measurement from the closest body part (lateral edge of the inside foot) to the starting line.

Since the lateral to medial jump score of the same side leg to the throwing arm (right leg for righties) went 4 for 4 in showing a positive correlation in each group, we made the conclusion that power is plane specific.

This was one of these “duh” moments because it makes obvious sense. If I can have more energy going towards my target, I have a better chance to transferring more energy up the kinetic chain to my throwing arm. If the rules didn’t stop me I would crow hop every time I pitched (like a Trevor Bauer warm-up) pitch trying to get as much as energy as I can going towards my target.

The pitching coach in me wants to warn against the young pitcher reading this and going out and trying jump towards the plate in order to boost their fastball. While it is important to initiate energy towards your target you need to be strong enough to capture and transfer that energy towards. If you aren’t strong enough on the front side you will exhibit what we in the business call an energy leak, just like the “low throwing velocity group from Matsuo’s study.

[Note from EC: for more reading on this front, check out my series, Increasing Pitching Velocity: What Stride Length Means and How to Improve It - Part 1, Part 2, and Part 3.]

EC: Okay, these are all well and good, but let’s talk practical applications. What can coaches take away from your research to immediately make their baseball strength and conditioning programs better?

GL: I think this helps us make smarter decisions in what we need to add/emphasize in our programs, and what we can subtract/deemphasize. Basically, we need to add more exercises that will improve frontal plane power and subtract some of the exercises that don’t. For example, hang cleans and drop jumps might help increase vertical jumping ability, but if goal is to throw 90mph these might not be the best use of our limited amount of time and energy.

The hard part about training the frontal plane is that your options are limited by traditional weight training. We need to think outside of the box like Bret Contreras did with his hip thrust in trying to improve running speed. Exercises that I would say to add or emphasis would be band resisted lateral jumps and lateral sled dragging since they are both performed in the frontal plane.

On the flip side, if we spend time working on creating more energy, we also have to think about how we can absorb it and ultimately transfer it to the baseball. This makes me think that single-leg training is very important, so we need to emphasize qualities like concentric strength for the back leg and eccentric strength for the lead leg.

EC: How about future research? What do we need to study next in order to build on these findings to continue to improve our understanding of long-term management of overhead throwing athletes, particularly pitchers?

GL: The next step would be to create a long-term study where a group of experienced baseball players train for 4-8 weeks. One group would include some frontal plane movements and the other wouldn’t. Test both pre and post throwing velocity and you’ve got another study. I wish I had the resources to do this, but I also don’t feel very ethical having some young baseball players not using these any frontal plane movements.

I think that these results also point to the fact that throwing a baseball is a full body movement. If we can get our pitchers throwing more like athletes and harness the power created by the lower body, we can eliminate some stress from the throwing arm keeping more baseball players in the game.

EC: Thank you very much for your great insights. Where can my readers find more from you?

GL: Thank you again for having me. I have a blog where I translate some of the geeky exercise science research related to baseball into Layman’s terms (cheesy use of my last name but it works). My goal there is to cover the gaps between the research lab, weight room and baseball field so that more players and coaches can benefit from all the information that is available.

You can also find me at Inside Performance, which is an awesome indoor baseball training facility in North Vancouver (possibly the rainiest place in the world) where I work as a S&C coach.

References

MacWilliams, B, Choi, T, Perezous, M, Chao, E, and McFarland, E. Characteristic ground reaction forces in baseball pitches. Am J Sports Med 26: 66-71, 1998.

Matsuo, T, Escamilla, R, Fleisig, G, Barrentine, S, and Andrews, J. Comparison of kinematic and temporal parameters between different pitch velocity groups. J Appl Biomech 17: 1-13, 2001.

Spaniol, FJ. Predicting throwing velocity in college baseball players. J Strength Cond Res 11: 286, 1997.

Sign-up Today for our FREE Baseball Newsletter and Receive a Copy of the Exact Stretches used by Cressey Performance Pitchers after they Throw!

Name
Email
Read more

Long-Term Baseball Development: Attention to Detail Matters

As I type this, I'm out at the Area Code Games in Long Beach, CA with New Balance Baseball.  For those who aren't familiar with Area Codes, it's a yearly event that brings the top high school players in the country together to showcase their skills in game play and batting practice in front of loads of professional scouts and college coaches.  In all, about 230 of the top players in the country take part in the event, and they compete a representatives of their geographic regions. I've been doing arm care education and taking teams through pre-game warm-ups on the field.

It's been interesting for me to interact with kids from not only a variety of different parts of the country and get a feel for the coaching style to which they each respond.  And, you can definitely tell who has been exposed to some quality strength and conditioning thus far, as well as who has had formal baseball-specific education to assist in their development. Along those lines,  one of the the more prominent observations I've made in high level players at Cressey Performance has also proven to be present here: 

Attention to detail makes a huge difference.

I often cite CP athlete and Royals pitcher Tim Collins as a great example of this.  Tim is a gym rat in the off-season; he hangs out in the office and cracks jokes with our athletes all the time.  However, the second he picks up a baseball or gets to lifting, he flips a switch and tunes the world out.  This is true regardless of whether he's long tossing, deadlifting, or warming up.  There is no joking around with buddies when he's trying to learn a new skill or repeat his mechanics.

Steve Cishek is the same way.  He might coordinate the CP NHL League on X-Box, but the second he picks up a ball, he's all business.  As a sidearm guy who used to throw from a higher arm slot, repeating his somewhat new delivery is super important, as it is easy to develop bad habits when you're inattentive.

With that in mind, there isn't a high school kid alive who repeats his mechanics at a big league level, yet most high school guys you encounter have no problem chatting and goofing around when they're playing catch.  Kids would be much better off paying close attention to what they're doing on every throw, correcting as they go and using it as an opportunity to improve, not just warm-up.

The same goes for pre-game dynamic flexibility warm-ups.  When you chat with buddies the whole time, it's easy to do fewer reps, hold positions for less time, or just forget to do drills altogether.  And these are just a few of many examples; it's easy to get into bad habits and cut corners.

Maybe it's just the added scouting presence out here, but a lot of these highly ranked prospects really "get it" more than most of the other up-and-coming players I encounter.  Most are the best players in the history of their towns, yet they still want to improve. When they pick up a ball, they throw with intent.  When you coach them, they are more likely to look you in the eye to make sure they're doing things correctly.  While there are examples of guys being successful in spite of what they do and not because of what they do, for the most part, you can learn a lot by watching what accomplished players do to be successful.

I've said it before and I'll say it again: small hinges swing big doors.  

Pay attention to warm-ups.  Focus when you're long tossing.  Look coaches in the eyes.  Get in that one lift at the end of a long day when other players are tapping out.  Eat healthy when your teammates are just crushing pizza.  Seek out expertise instead of waiting for it to fall into your lap.  There are so many ways to improve - and do so today - that it's only your own fault if you aren't getting better.

Sign-up Today for our FREE Baseball Newsletter and Receive a Copy of the Exact Stretches used by Cressey Performance Pitchers after they Throw!

Name
Email
Read more

Why Baseball Players Shouldn’t Olympic Lift

I've been very outspoken in the past about how I am completely against the inclusion of Olympic lifts in baseball strength and conditioning programs because of injury risk and the fact that I don't believe the carryover in power development is as good as many folks think.  I've taken a lot of heat for it, too, as it's essentially blasphemy for a strength and conditioning coach to not think the Olympic lifts are a "Holy Grail" of performance enhancement.

Truth be told, I think there is merit to the Olympic lifts for a lot of athletes and general fitness folks.  However, baseball players aren't like most athletes or general fitness folks.  They have far more joint laxity, and it's a key trait that helps to make them successful in their sport.  While I hate to ever bring additional attention to an extremely unfortunately event, a weightlifting injury that occurs in this year's Olympics reminded me of just one reason why I don't include the Olympic lifts with our throwers.  Please keep in mind that while this isn't the most "gruesome" lifting injury video you'll see, some folks might find it disturbing (if you want to see the more gruesome "after" photo, read this article).  If you're one of those folks, don't push play (Cliff's notes: he dislocates his elbow).

Now, without knowing for sure what the official diagnosis is, an elbow dislocation could mean two things.  First, it could have been elbow hyperextension; I doubt that's the case, as the elbow appears to be slightly flexed when it "buckles."  Second - and more likely - we're talking about a valgus stress injury; not the joint angle below, which is approximately 20-30 degrees of elbow flexion:

You know what's remarkably coincidental about that elbow flexion angle?  It's where you do a valgus stress test to assess the integrity of the ulnar collateral ligament.

I don't know for sure if Sa Jae-hyouk is going to have a Tommy John surgery, but I can't say that I would be surprised if it does occur.  And, he certainly wouldn't be the first Olympic lifter to have one.

Now, I want to bring up a few important items.

1. I think this essentially kills the "they're safe for baseball players if it's in good form" argument that some folks throw out there.  For those who might not know, this was a gold medalist in Beijing in 2008, and he was expected to medal at this year's Olympics, too.  I suspect he knows a few things about proper Olympic lifting technique.

2. According to research from Bigliani et al, 61% of pitchers and 47% of position players at the professional levels had sulcus signs (measure of instability) in their throwing shoulders.  And, 89% of the pitchers and 100% of the position players ALSO had it in their non-throwing shoulders, meaning that this is the way that they were born, not just something they acquired from throwing. I've never met an accomplished male Olympic lifter with a sulcus sign, though, which tells me that laxity is virtually non-existent in this athletic population, particularly in comparison with baseball players.  We need to fit the exercises to the athlete, not the athlete to the exercises.  

3. The obvious next question for most folks is "what about cleans and high pulls?" With cleans, the wrist and elbow stresses are even more problematic than with snatches, and there is also the issue of direct trauma to the acromioclavicular joint on the catch phase.  Plus, when folks hang clean, the distraction forces on the lowering component of the lift (assuming no drop) can be a big issue in "loose" shoulders and elbows.  High pulls are a bit better, but all of the aggressive shrugging under load with minimal scapular upward rotation can really interfere with the improvements to scapular stability that we're trying to make with our overhead throwing athletes.

4. For those curious about what I meant with respect to the power carryover from linear modalities (like Olympic lifts) not being great to rotational sports, check out this recently published research study from Lehman et al. You'll see that it backs up what I'd proposed from my anecdotal experience back in 2010; that is, power development is very plane specific.  Get to doing your med ball work!

This is one case where the injury prevention battle isn't just about adding the right exercises; it's about taking some away, too.  

With all that said, I hope you'll join me in keeping Sa Jae-hyouk in your thoughts and send him good vibes for a speedy recovery and quick return to competition.

Sign-up Today for our FREE Newsletter and receive a four-part video series on how to deadlift!

Name
Email
Read more

8 Ways to Make Practice More Productive for College Baseball Pitchers

Today's guest blog comes from current Cressey Performance intern, Landon Wahl.

By its very nature, the life of a pitcher avails itself to many hours of pondering the game. Fresh out of my senior year of pitching at the collegiate level and having time to reflect upon my experience, overall I can say it was the best time of my life. However, there were many times during practice where I felt like I should have stayed home because nothing was accomplished. I would often stand in the outfield gaps behind the position players wondering: “how is this making me a better pitcher?”

After 2-3 hours of batting practice, our coach would have us bring it in and that was the end of practice. Summary: a 3-hour practice that consisted of a 10-minute warm-up, 5-10 minutes of throwing, and 2 hours and 40 minutes of standing around listening to my teammate tell me how sure he was that all of his teachers were trying to fail him (go to class, buddy). Some practices involved the pitchers more than others, but for the most part, practice time could have been used much more efficiently. Below are some ways practice time can be used to make pitchers more involved at practice as well as some things to avoid!

1. Set aside time in practice to have a proper warm up.

Too often, players come to practice and will disregard the warm-up or perhaps not warm up at all! Players grab a ball and start throwing with no physical or mental preparation. Every program is different in regard to warm ups. As a coach, make sure that regardless of what style warm-up you prefer, that you stick to it! At Cressey Performance, all athletes go through a foam rolling series as well as a dynamic warm-up before even touching a baseball, medicine ball, or weight. If you are a coach looking for inspiration, watch the video below and have your guys do it for a warm up. It almost goes without saying that it will help your guys feel and move better as well as prevent future injuries.

2. Make sure throwing - especially the long toss component - isn’t rushed.

Some programs are pretty good about this, but others aren’t. It is understandable that as a coach you have a lot to cram into a 2-3 hour practice and you want your guys to get as many swings in as possible, too. Think of long toss as a pitcher’s BP. It is important to let your pitchers get their arm speed up to help improve performance and stay healthy throughout the season. Try not to rush through the throwing to get to batting practice; it will help everyone be more prepared for your big weekend conference series.

3. Stop making pitchers stand around during batting practice.

First of all, I understand that sometimes pitchers are needed to help shag fly balls and make sure that the hitters get their work in, but this doesn’t have to be ALL the time! Sure, it’s nice to talk with fellow teammates and occasionally track down a fly ball, but overall there is little to no value to preparing your pitchers. Instead of having the pitchers stand around during the early parts of the week at batting practice, send them to the weight room for resistance training, athletic training room for manual therapy or stretching, or elsewhere on the field to do movement training or plyos.

4. Set aside time in practice to work on pick-offs, 1st/3rd defensive plays, PFP, live situations, and bunt defenses.

Too often, basic pitching defense gets brushed aside on the daily practice schedule. All of these essential parts of the game could take a full week just to cover, not master. For incoming freshman, these situations may not have been covered very thoroughly or even at all in high school! Have the coaching staff split up and cover these situations often; they may arise at any time during your important conference series! For your players to have confidence in the plays and skills that they will develop in practice is crucial, and will directly relate to confidence on the mound during in-game situations. This is also a good time to break away from the monotony of an extended batting practice session and get the pitchers involved.

5. Don’t enforce “punishment” running.

As a coach, it is understandable that players can upset you in many ways: poor play, off-field offenses, or on-field offenses. Nothing as a player is worse than hearing, “on the line,” not just because the punishment is usually miserable to complete, but also because nothing productive is being accomplished!

Consuming alcohol at the collegiate level is what unfortunately gets lots of guys into trouble. Having to participate in “punishment runs” was an absolute nightmare, usually because I was always running for someone else's screw-up. And, it didn’t matter how many times we were punished; guys would still go out to the bars later that night, not having learned a thing. It brings team moral down and creates problems between teammates. Believe me, there were some guys with whom I was not happy.

Some of the most successful teams win games because they're close-knit groups, not because they have the most talent! A prime example was my high school baseball team during my senior year of 2008. One could debate whether we were the most talented team in comparison to teams in the past, but we made it all the way to the state championship game. This was due to the fact that we did absolutely everything together as a team, and never had situations that compromised our positive team dynamic.

Punishment runs not only wreck your players physically, but also destroy them mentally. Sometimes discipline is in order, but try and find another way to do it! There is only one thing you need. Bench the player until behavior improves. Negative reinforcement such as running only deals with issues temporarily. Benching a player might cause some player-coach tension, but that’s part of being a coach. Make the best decision for the whole team and ensure that every player represents your college or university in a proper manner.

6. Don’t make pitchers catch bullpens.

This is just my personal opinion. I understand that some programs do this and others don’t. Hopefully, I can provide insight for just one coach, at any level. Coming from a previous program who endorsed this, I saw firsthand how it can really end up injuring a pitcher. I’ll relate a personal account...

One afternoon during freshman year at practice, I walked up to the field and my coach informed me that I would be catching every single pitcher, and then I would get to throw my bullpen. Unfortunately, I had never caught an inning in my entire life. Still, I suited up. The first few fastballs went well. The first curveball, however, didn't.  It bounce in front of me by about two feet and you can probably guess what happened next.

The whole team thought it was funny (and in hindsight, it was), but at the time, it was not. In the months after that experience, I was afraid of the ball, shying away whenever it got close to the mitt. This not only was physically taxing on me, but the pitchers couldn’t get in a rhythm and their bullpens suffered as a result. There is something to be said for having a catcher who sticks your pitches, moves back and forth across the plate, gives feedback on your pitches, and encourages you because they are confident; this was not happening with me. After I caught all of the bullpens, I began to throw mine. You can also be sure that another fellow freshman caught me; the practice was a total waste, for everyone.

7. Talk to each player one-on-one.

Every coach could do this more often. I know that after a game in which I performed well (or not so well), it was nice to have my coach tell me things I could improve upon while highlighted things I executed correctly. This is also important for players who are not regular starters, or kids who have never played an inning. It is essential to provide hope for these players; at any time they can be a cornerstone in the lineup! Too often, good baseball players don’t receive the proper mental reinforcement. It sounds cliché and simple, but even telling a player “good job” can carry them a long way. It is also important to have meetings with players outside of practice and listen to their thoughts and concerns, both academically and athletically.

8. Have fun.

Having fun is what the game is all about. Winning is fun. Having fun at practice is fun, too! Create competitions between the players. Let pitchers take batting practice. Create incentive for your players to be excited and ready to go when practice time rolls around! Most of all, be supportive of every player. Playing college ball and going to class is quite a workload. There is nothing better in the world that blowing off some steam and forgetting about school responsibilities by playing some baseball.


 Questions or comments?  Please post them below.  Also, Landon Wahl can be reached at landonwahl@yahoo.com.

 Sign-up Today for our FREE Newsletter and receive a four-part video series on how to deadlift!

Name
Email
Read more
Page 1 65 66 67 68 69 82