Elite Baseball Mentorships: The Importance of Hip Rotation

About the Author: Eric Cressey

Today’s guest post comes from my friend and colleague, physical therapist Eric Schoenberg. Eric is an integral part of our Elite Baseball Mentorships.

The ability to properly assess, interpret, and manage hip range of motion (specifically rotation) is a critical skill in preventing injury and improving athletic performance in a baseball player. Proper hip rotation sets up better alignment and direction in the pitching motion which sets up proper pelvic and trunk rotation and an improved ability to generate torque. Stodden, et al. reports a direct correlation between increased hip rotation ROM and increased throwing velocity.

skoufa

As we covered in Phase 1 of the Elite Baseball Mentorship , a pitcher who does not internally rotate fully through the back hip will tend to land closed-off. While some pitchers may use this to improve deception or get more movement on their pitchers, this positioning can lead to the pitcher (especially a less experienced one) to either miss high and arm side or attempt to throw across his body and cut the ball. The pitcher will in turn try to “make up” velocity with his arm/shoulder due to the movement faults in the kinetic chain. This compensation is a very common cause of shoulder and elbow injury in pitchers.

Weaver closed stride

Additionally, Kibler, et al. notes that kinetic chain deficits are discovered on examination in a majority of patients with SLAP (superior labrum anterior-posterior) injuries. Deficits in hip abductor or extensor strength, deficits in hip rotation flexibility, or core strength weakness have been identified in 50% of SLAP injuries.

In Phase 1 of the mentorship program, we discussed in great detail the importance of understanding total motion of the shoulder as a key risk factor in pitching injuries. A recent study from Garrison, et al. once again demonstrated that total ROM (ER + IR) is a better metric for predicting injury risk than GIRD (Glenohumeral Internal Rotation Deficit).

These same concepts also apply to the hip. However, there are fewer research studies and less consistent findings of hip ROM norms in rotational athletes. In addition, you will see some clear differences in ROM based on position (pitcher vs. hitter) which need to be appreciated when designing training and rehab. programs.

Tippett reports increased hip IR in the trail leg (vs. lead leg) of college baseball players. In contrast, Hills (2005) reported no significant difference in hip IR between the back hip and lead hip in hitters, however hip ER and total ROM was significantly greater in the back hip. Whereas, Laudner, et al. notes that in pitchers, there is less internal rotation of the trail leg than position players resulting in a less effective and potentially more dangerous throwing motion.

Anecdotally, as we look at the lead leg in a hitter, internal rotation force often exceeds available hip internal rotation ROM resulting in microtrauma to passive structures and resultant instability of the hip (i.e. abnormal gliding and shear forces of the femoroacetabular joint). As a result, and similar to the shoulder, the athlete will lose dynamic stability (motor control) causing unequal distribution of force on the weight bearing surfaces and finally osseous (bony) or labral pathology ensues.

Finally, from a strength prospective, there is a clear difference between recruitment patterns used to hit a baseball vs. throw a baseball. EMG studies by Shaffer and Jobe et al. show hitters rely much more on the lower half and core for power development and transfer, while using the upper extremity/hands more for position and direction. On the other hand, pitchers seem to rely more on energy created in the core and upper extremity, potentially placing pitchers at an increased risk for upper extremity injury.

footer_logo-3

Key Takeaways

1. Failure to properly identify and correct hip ROM deficits (especially lack of hip internal rotation in pitcher’s drive leg) will result in increased injury risk throughout the kinetic chain.

2. Asymmetrical rotational patterns in baseball players result in need for training and rehabilitation programs to work rotation in both directions.

3. Continued proof of the need to respect structural changes (i.e. retroversion) as well as position specificity (i.e. pitcher vs. position player) in developing effective training and rehabilitation programs.

4. From a treatment perspective, don’t just rush to stretching what seems “tight”. Consider the principles of relative stiffness, pelvic alignment, breathing patterns, and lumbopelvic stability before we start cranking away at the hip joint.

If you would like more information regarding the mentorships, please visit our website, www.EliteBaseballMentorships.com. The early bird registration deadline for the August 18-20 Phase 2 Mentorship is this Thursday, July 18, 2013. Click here to register.

Home_page1

Archives: