Home Baseball Content Increasing Pitching Velocity: What Stride Length Means and How to Improve It – Part 2

Increasing Pitching Velocity: What Stride Length Means and How to Improve It – Part 2

Written on February 16, 2012 at 11:18 am, by Eric Cressey

In part 1 of this series, I discussed the fact that – all other factors held constant – increasing stride length will improve pitching velocity.  Unfortunately, when you simply tell a pitcher to stride further down the mound, there are usually some unfavorable mechanical consequences that actually hinder pitching velocity.  So, be sure to read that piece before continuing on here.

That said, sometimes, physical limitations can make it difficult to acquire a longer stride.  To that end, I wanted to use this second installment to begin to outline the top five limiting factors for those looking to get down the mound and throw harder.

1. Hip Mobility

If you’re going to really get down the mound, you need outstanding adductor length on both the lead and trailing legs.  That goes without saying.  While we outline several options on our Assess and Correct DVD set, the split-stance kneeling adductor mobilization is definitely my favorite, as it improves adductor length in both hip flexion and extension:

 Just as important, players need to stop “hanging out” in adduction in sitting and standing.  I wrote about this in a bit more detail in my What I Learned in 2010 article (point #3).  This is incredibly common in right-handed throwers, in particular.  If your resting hip posture looks like this, fix it!

We use a variety of drills from the Postural Restoration Institute to help address the issue, but suffice it to say that you’ll be swimming upstream unless you learn to stop standing/sitting like this!

Additionally, you need adequate length of the trailing leg hip flexors – particularly rectus femoris – to ensure that you don’t cut off hip rotation prematurely.  I like the wall hip flexor mobilization for this purpose.  Keep in mind that we perform the exercises on both the front and trailing leg, as many pitchers will have substantial knee flexion deficit on the front leg secondary to the stress of landing/deceleration.

Third, you need adequate hip internal and external rotation on both sides.  Hip external rotation range-of-motion on the trailing leg is particularly important to allow force to be applied over a longer distance.  Additionally, hip internal rotation is key on the front side, as enables a thrower to utilize the lower half more efficiently in deceleration.  Those without adequate internal rotation on the front side often cut their arm paths short and miss high with pitches – and put much more stress on their arm because the deceleration “arc” is shorter.

External rotation is best gained through glute activation drills (supine bridges, side-lying clams, x-band walks) in conjunction with simply externally rotating the femur during the split-stance kneeling adductor mobilization I featured earlier.  For internal rotation, I like a gentle knee-t0-knee stretch/mobs (assuming no medial knee issues) , and bowler squats as a follow-up to get comfortable with the pattern.

 Of course, all these mobility drills must be complemented by quality soft tissue work: foam rolling and, ideally, manual therapy with a qualified practitioner.

So, as you can see, adequate hip mobility for optimizing pitching velocity must take place in a number of planes.  Additionally, you need to remember that mobility is always influenced by musculo-tendinous. capsular, ligamentous, and osseous (bony) restrictions, so no two pitchers will be the same in their needs.  And, some pitchers simply may not have the bone structures to get into certain positions that are easy for other pitchers to achieve.

2. Lower-Body Strength/Power

You can’t discuss lower-body mobility without appreciating the interaction it has with lower-body strength and power.

You see, mobility is simply your ability to get into a certain position or posture.  Flexibility is simply the excursion through which a joint can move.   What’s the problem?

Flexibility doesn’t take into account stability.  Just because you can get your joints to a certain position in a non-weight-bearing scenario doesn’t mean that you’ll be able to achieve that same position when you’re in a weight-bearing position, trying to throw 95mph as you move downhill.  So, I’ll put my point in big, bold letters:

Pitchers need strength to have mobility.

Truth be told, building lower body strength in throwers isn’t tough.  You use all the basics – single-leg work, deadlift variations, squat variations (when appropriate), sled work, pull-throughs, glute-ham raise, hip thrusts, glute bridges, etc. – but just work to make sure that they are safe for throwers (e.g., use the front squat grip instead of the back squat grip).

Strength isn’t just a foundation for mobility, though; it’s also a foundation for power.  You can’t apply force quickly if you don’t have force!  So, once players have an adequate foundation of strength, they can benefit more from rotational medicine ball exercises and plyos in the frontal/transverse planes to learn to better apply force outside the sagittal plane.

Make no mistake about it; having adequate strength/power to push off and rotate aggressively – not to mention decelerate the body on the front leg – is essential to outstanding pitching velocity.

I’ll be back soon with Part 3 of this series.  In the meantime, if you’re looking for more hip mobility ideas for baseball players, check out Assess and Correct: Breaking Barriers to Unlock Performance.

Sign-up Today for our FREE Baseball Newsletter and Receive a Copy of the Exact Stretches used by Cressey Performance Pitchers after they Throw!

Name
Email

2 Responses to “Increasing Pitching Velocity: What Stride Length Means and How to Improve It – Part 2”

  1. Tyler Says:

    Great Article.

    I do have a question about Assess and Correct. I’ve wanted to get it for years but I’m currently debating on getting it or Gray Cook’s FMS. How are they similar and different? If anyone has used both and has info I’d appreciate it.

  2. Eric Cressey Says:

    Tyler,

    I think the primary differences between A&C and the FMS approach would be the fact that A&C entails specific, rather than general assessments. So, they are very much complementary products to Gray’s stuff (and Gray is a BRILLIANT guy – so you can never go wrong with his stuff).

    In my own personal assessments – particularly because I’m dealing with a specific population (overhead throwing athletes) – I prefer to go from specific to general assessments. The FMS teaches the general to specific progression. Both have merit, so it’s valuable to know each.

    A&C will also give you a seemingly endless selection of progressions and regressions you can use with clients based on the findings in their evaluations.

    Hope this helps.


LEARN HOW TO DEADLIFT
  • Avoid the most common deadlifting mistakes
  • 9 - minute instructional video
  • 3 part follow up series