Home Posts tagged "cold water immersion"

Cryotherapy and Exercise Recovery: Part 2

Today's guest post is the second installment in a series on cryotherapy from Tavis Bruce. In case you missed Part 1, you can check it out HERE. -EC

Headshot

In Part 1 of this two-part series on cryotherapy, I summarized the literature to-date on the short- and long-term effects of post-exercise cryotherapy.

To briefly recap:

• Cryotherapy, particularly cold water immersion (CWI) seems to reduce perceptions of fatigue and muscle soreness and increase perceptions of recovery which may benefit performance in the short-term.

• However, chronic use of cryotherapy is contraindicated due to the detrimental effects on long-term training adaptations.

Today, in Part 2, I’m going to discuss more of the practical side of cryotherapy—basically, how to make the most of it, if and when you choose to use it.

But first, I thought I would discuss some baseball-specific research that may be of interest to the baseball players and coaches out there who are reading this article.

Should Pitchers Ice?

As a pitcher, my relationship with ice is definitely what I would describe as hot n’ cold (pun intended). When I was younger, slapping an ice pack on my arm was somewhat of a post-game ritual. But, by the time I got to college, I found myself questioning how much icing my arm actually “helped”. I eventually stopped icing altogether, save maybe a few times when I was particularly sore. Suffice to say, I’ve always been curious what the research had to say about icing after throwing, so I was pretty stoked to find a few studies that looked at exactly that. (If you don’t care about baseball, go ahead and skip to the next section.)

In a study of “highly skilled”* amateur baseball players, Yanagisawa et al. found that light shoulder exercise (20 minutes on an arm ergometer at a low-intensity) was more effective than ice at restoring internal and external shoulder strength and range of motion (ROM) 24 hours after a 7-inning, 98-pitch simulated outing (38,89). However, improvements in shoulder strength, ROM, and muscle soreness were greatest when ice and light shoulder exercise were combined. These results indicate that active recovery (such as light shoulder exercise) may be an effective recovery strategy between pitching appearances, and that ice may provide some additional benefits, particularly relating to the management of delayed-onset muscle soreness (DOMS) in the throwing shoulder after pitching.

*The participants were college-aged, but the authors did not explicitly state if they were college or recreational baseball players, nor did they state average velocities.

Two studies (90,91) looked at the effects of icing the throwing arm between innings of a simulated game. Interestingly, both studies found that pitchers’ velocities dropped off less when they iced their throwing arms between innings compared to when they didn’t. In addition, icing between innings decreased perceived exertion and increased perceived recovery (91) as well as increased the number of innings and the total number of pitches pitchers threw when pitchers threw to volitional fatigue (90).

layback

While these findings are intriguing, I wouldn’t go icing my arm between innings just yet. It’s certainly possible that cooling the pitchers’ throwing arms modified perceptions of effort and fatigue in a way that allowed for a greater output as the game went on. But, as I alluded to earlier in this article, cooling can disrupt both neuromuscular drive as well as proprioceptive feedback from the arm, both of which have important implications for throwing a baseball fast, accurately, and (perhaps) “safely”. This may be less problematic in low velocity pitchers (with an average fastball of about 70 miles per hour, the pitchers in these two studies weren’t exactly lighting up the radar gun!) but we have no idea how pitchers with elite-level fastball velocities would respond to this kind of protocol.

There is no direct evidence that suggests that ice is detrimental to pitching performance. In particular, ice combined with active recovery strategies such as light shoulder exercise may help reduce DOMS and restore shoulder strength and range of motion between pitching appearances. However, these findings need to be interpreted with caution as the effect of icing after throwing in the elite-level pitcher has not been quantified nor are there any longitudinal studies assessing the long-term effects of icing after throwing on functional or morphological adaptations to a comprehensive, periodized throwing program. Given the detrimental effects of CWI on resistance training adaptations, regular icing of the shoulder is not recommended in the off-season.

Does Cooling Method Matter?

It turns out that how you choose to cool down after exercise may be important. A 2013 meta-analysis by Poppendieck et al. found that CWI was more effective than ice packs and cryogenic chambers for performance recovery in trained athletes (92). This findings may be biased due to the large majority of studies that use CWI as their cooling intervention but there’s a reason for this: CWI is by far the most effective method for cooling the body (93) and, as such, it has become the gold standard in both research and athletic settings.

iceb

Whole-body cold water immersion also appears to be more effective than cooling only the exercised limb(s) (92). This may be due to a greater reduction in core temperature with whole body cooling than with partial-body cooling (94) in addition to the (potentially) therapeutic effects of hydrostatic pressure experienced during water immersion10. If CWI isn’t available, compression wraps can enhance the intramuscular cooling effects of ice packs (95,96) in addition to providing a compression effect (albeit to a far lesser degree than water immersion), although it’s not quite clear what effect (if any) this might have on recovery.

Whole body CWI is not only the most effective way to cool the body, it may also have the greatest therapeutic benefit, due to the temperature-independent effects of water immersion.

Is There an Optimal Temperature or Duration?

There is no definitive evidence on an “optimal” temperature or duration for cryotherapy; however, the available research provides some insight.

In their meta-analysis, Poppendieck et al. concluded that water temperatures of 12-15ᵒC are sufficient to elicit positive effects on post-exercise recovery in trained athletes and that cooler temperatures are not likely to produce any additional benefit (92).

As for duration, 10 minutes of whole body CWI at 12-15ᵒC is more than enough to elicit a reduction in intramuscular temperature (93) and 20 minutes seems to be the upper limit of what is used in the literature (with the exception of warmer immersions, of course). Logically, the less body mass that is exposed to cold, the longer the exposure needs to be to elicit a similar reduction in core body temperature (94). Similarly, colder temperatures require shorter exposures (97).

Further evidence suggests that CWI for longer durations (30 minutes) may exacerbate the inflammatory response to exercise (64) and there are several documented cases of peripheral nerve injury when ice packs are left on for too long (98,99). Don’t be the guy that falls asleep with an ice pack on!

A 10-minute, whole body immersion at 12-15ᵒC is more than enough to reap the benefits of CWI. Cooler temperatures or longer durations are unnecessary and potentially harmful, so always be sure to err on the side of caution.

What About Placebo Effects?

Despite the placebo effect being well-documented in sports (see Beedie et al. [100] for review), there hasn’t really been an attempt to quantify its role in the positive outcomes we (sometimes) see with cryotherapy. Sugar pills are one thing, but it’s not exactly easy to convince someone they’re taking an ice bath—without actually having them take an ice bath! So, when Broatch et al. published their placebo study in 2014 there was a lot of hype on the internets. And for good reason: it was the first study that compared CWI to, what I consider to be, a pretty decent shot at a placebo condition.

%!%22_Health_Fra

In the study, participants in the placebo group performed 15 minutes of thermoneutral immersion but were led to believe it contained a special “recovery oil” that was just as effective as CWI. And the results were pretty compelling: the thermoneutral placebo was just as effective as CWI at restoring quadriceps strength (MVC) up to 48 hours post-exercise and both groups recovered significantly better than the thermoneutral control group. In addition, both the CWI and the thermoneutral placebo group reported similar subjective ratings of recovery.

Now, we can’t generalize these results to all scenarios because the study looked at recovery of quadriceps strength following four 30-second maximal sprints on a cycle ergometer. We have no idea to what extent placebo effects are involved in recovery from, say, resistance training, endurance exercise, or team sports. I think it’s pretty safe to say they likely play a role, though.

So how do we interpret these results?

Well, we could throw the ice out with bathwater. After all, cold water immersion is no better than placebo, right? But I don’t think that’s necessary. As a coach, I think it’s always important to consider the preferences of your athletes. And I think this study supports the use of CWI with athletes who believe it to have a recovery benefit (e.g., Cook & Beaven found that repeat sprint performance following CWI was related to how much athletes “liked” it [67]). Said differently, there’s not enough solid evidence to encourage your athletes to use CWI, but I see no reason to discourage an athlete who sees value in it either.

This last point comes with one major caveat: as long as an athlete’s use of CWI does not impede on your training goals for that athlete. In this sense, it may be valuable to educate athletes who regularly use CWI on its potentially detrimental effects on long-term training adaptations and explain to them it is best used sparingly throughout the competitive season.

Placebo effects almost certainly play a role in the recovery benefits of cryotherapy, but it’s not clear to what extent. Coaches should pay attention to the preferences of their athletes, and not necessarily discourage an athlete who perceives cryotherapy to be beneficial from using it sparingly, and in a manner that is congruent with their training goals.

Practical Recommendations

If you’re an athlete (or if you coach an athlete) that likes using ice or ice baths for recovery, that’s great! Keep doing what you’re doing. But to make the most of it, I suggest you following my recommendations below:

• Use ice baths over ice packs or other forms of local cooling whenever possible.

• Make sure the water temperature is between 10-15 degrees Celsius but not any colder. Colder does not mean better. Warmer temperatures (up to 20 degrees Celsius) for longer durations can also be used.

• Ice baths should last between 5-15 minutes. The colder the water, the shorter the ice bath should be.

• Submerge your whole body (up to your neck/shoulders), or as much of your body as you can.

• After the ice bath, allow time for rewarming and ensure an adequate warm-up before your next game, event, or training session. Avoid using ice baths immediately (<1 hour) prior to exercise, particularly before training or events involving high-intensity or explosive efforts such as sprinting, jumping, or weightlifting. The exception to this rule would be if you’re competing in an endurance event in warm or hot weather. In this case, precooling may enhance subsequent performance.

• Use ice baths sparingly. Regular ice baths kill strength and muscle mass gains! They’re best saved for strategic use during the competitive season when you’re trying to recover performance within a few hours to a few days.

• Important: Be careful! Cryotherapy does not come without its dangers. Exposing your body to cold temperatures for too long can have potentially dangerous effects. (E.g., don't fall asleep with an ice pack on your shoulder. I used to do this. It’s moronic!) Set yourself a timer and stick to it. And if things start to feel sketchy before the timer goes off, call it quits!

Note: the references for this entire article will be posted as the first comment below.

About the Author

A native of the Great White North, Tavis Bruce (@TavisBruce) is no stranger to the effects of cold on athletic performance. He holds a Bachelor of Kinesiology and Health Science from the University of British Columbia, where he pitched for the Thunderbirds baseball team for three seasons. Tavis is currently the Director of Education for the Baseball Performance Group, where he integrates his passion for sports science with his love of baseball. He can be contacted at tavis.bru@gmail.com.

Sign-up Today for our FREE Newsletter and receive a four-part video series on how to deadlift!

Name
Email
Read more

Cryotherapy and Exercise Recovery: Part 1

Today's guest post comes from Tavis Bruce. A while back, I asked Tavis to pull together an article examining the literature on cryotherapy with athletes, and as you'll see below, he really overdelivered. Enjoy! -EC

Headshot

Sports and ice go together like peanut butter and jelly (or steak and eggs, if you’re into Paleo). From ice packs to ice baths, various forms of “cryotherapy” have long held a sacred place in sports medicine to treat acute injuries and facilitate recovery from training or competition. But despite its popularity and widespread use, the evidence in support of cryotherapy remains equivocal.

More recently, cryotherapy—particularly the use of ice baths, or cold water immersion—has come under increasing scrutiny from both the scientific community and the strength and conditioning industry at large...and rightfully so! However, in the process, we may be swinging the pendulum too far in the other direction, indicated by those who have come to the conclusion that “ice baths are a complete waste of time for every athlete in every sport in every possible situation.” Now, others may disagree with me on this one; but, the evidence (or lack thereof) for cryotherapy appears to be a little more nuanced than that.

I guess what I’m trying to say is: I’m not so sure I’m ready to throw the ice out with the bathwater just yet. Perhaps, instead of pondering black-and-white questions like, “to ice or not to ice?” we should be asking:

                         “When is ice appropriate?”

I’d like to examine why.

A quick note before we get started: this article will not discuss the use of cryotherapy for the management and/or rehabilitation of acute soft tissue injuries. I am NOT a medical professional; I just play one on Facebook.

As such, this article will only cover the efficacy of cryotherapy as a post-exercise recovery strategy.

Is there a Physiological Rationale for Cryotherapy?

Note: I’m not going to spend much time discussing the physiological rational (the “why”) behind cryotherapy for two reasons. First, the mechanisms are still quite hypothetical. Second, and more importantly, it’s a bit outside the scope of this article to convey practically relevant and actionable information for my fellow coaches and athletes. We can debate the mechanistic stuff until the cows come home, but in my humble opinion, the gold standard measurement for post-exercise recovery is the measurement of performance variables. And, I like to think that most athletes, coaches, and sports scientists would agree with me. That being said, I do think it’s always a good idea to establish if there is at least a physiological rationale for any method we may use with ourselves and/or our athletes. With that said…

Cryotherapy results in various physiological changes (most of which are temperature-dependent) that have long been proposed to exert a therapeutic effect post-exercise. Although the most cited physiological change is a blunted inflammatory response, there exists a range of other effects through which cooling the body after exercise may accelerate the recovery process. Of note, cryotherapy may:

• Improve tissue oxygenation1 and removal of metabolic waste (2) by reversing exercise-induced muscle edema (3,4).
• Reduce reactive oxygen species (ROS)-mediated muscle damage (5) by reducing local metabolism (1).
• Induce analgesia by decreasing nerve conduction velocity (6) in addition to directly activating sensory afferents (7).
• Restore parasympathetic tone by increasing vagal tone (8,9).

In addition, cold water immersion (or “ice baths”), a popular form of cryotherapy, may have additional benefits resulting from the compressive forces experienced during water immersion, but I won’t be covering them in this article (see Wilcock et al. [10] for a good review). For more information on the physiological effects of cold water immersion and other forms of cryotherapy, I encourage you to check out this (open access!) review by White and Wells.

The Effects of Cryotherapy on Recovery from Sport or Exercise

Perceptual Measures of Recovery

Cold water immersion reduces perceptions of fatigue (11-16) and increases perceptions of recovery (17,18) and physical readiness (19) between training sessions; however, it doesn’t seem to have much of an effect on ratings of perceived exertion (RPE) during subsequent training bouts (20-23).*

*Except for when CWI is used as a precooling strategy before exercise. (More on precooling later.)

Delayed-Onset Muscle Soreness

Though it’s pretty well accepted that cooling injured tissue can temporarily reduce or relieve pain (24), it’s not really clear if post-exercise cooling has any effect on delayed-onset muscle soreness (DOMS): the type of soreness you feel in the days following a bout of intense or novel exercise.

There is some evidence that cold water immersion (CWI) alleviates DOMS better than passive recovery (25), particularly when CWI is used following exercise that involves a large degree of metabolic stress (26) (e.g., running, cycling, or team sports). However, this effect is less clear when CWI is compared to warm (27), thermoneutral1 (4,28), or contrast (27,29,30) immersion, and recent evidence suggests that CWI may be no more effective than a placebo (19) for relieving DOMS. Collectively, these findings highlight the perceptual nature of muscle soreness and the importance of athletes’ perceptions of cryotherapy (or any recovery method, for that matter).

Icing and cold water immersion may help reduce delayed-onset muscle soreness after running or team sports, but the effect likely depends on the athlete’s belief in cryotherapy as a method of recovery.

Range of Motion

There is conflicting data on the effect of cooling on range of motion (ROM). Cooling alone does not appear to improve ROM (28,31-38), but it may enhance the effects of stretching (39-43) by increasing stretch tolerance (44). On the one hand, this increased tolerance to stretch does not appear to translate into long-term improvements in ROM (45-47). On the other hand, heat combined with stretching may have more lasting effects than stretching alone (44).

If your goal is to restore lost ROM following exercise, combine heat (not cold!) with stretching.

GoodHFStretch

Strength

The short-term effects of post-exercise cooling on recovery of strength characteristics are mixed and seem to depend on the type of exercise stress from which you’re trying to recover before you hit the weights.

There is some evidence that CWI may reduce or recover losses in maximal voluntary contraction (MVC) following simulated team sports (48-50) or intermittent sprint exercise (51-53), but not after downhill running (54) or cycling (55,56). And, in the only study of its kind, Broatch et al. found that CWI following high-intensity sprint intervals recovered MVC no better than a thermoneutral placebo (19).

Roberts et al. demonstrated that CWI was effective for restoring submaximal (but not maximal) strength between two lower body training sessions within the same day (57). Vaile et al. found both cold and contrast water immersion were effective at restoring strength up to three days after heavy eccentric strength training (27)*, but most studies show no or non-significant improvements over this time period (28,58-62). However, it’s important to note that all of these studies used (potentially) “less effective” cooling methods (such as when only the exercised muscle is cooled) compared to more therapeutic methods such as whole-body CWI.

*I highlight the study by Vaile et al. because it is the only study that compared multiple hydrotherapy modalities in trained males, and in a cross-over design with a “washout” period between treatments of sufficient duration to eliminate any residual effects of the repeated bout effect. Thumbs up for study quality!

Cold water immersion may help recover muscle contractile properties following running or team sports. Benefits following resistance training are less clear and may require the use of cold water immersion over local cooling of exercised tissue.

Jump Performance

Most studies show significant recovery of jump performance within 24-48 hours post-exercise with no clear additional benefits to CWI (18,49,53,63,64). Furthermore, CWI may impair jump performance within the first two hours (57) possibly due to the acute effects of cold exposure on force production (65).

Here’s the deal: jump performance seems to recover just fine on its own. However, there is some evidence that CWI may maintain jump performance in scenarios of accumulated fatigue, such as during tournament play in team sports. One study of basketball players found that the CWI maintained jump performance better in players who saw more playing time throughout a 3-day tournament (66).

iceb

Sprint Performance

Like jump performance, many studies report that sprint performance returns to baseline within 24 hours after exercise, regardless of treatment intervention (18,49, 61). Accordingly, most studies do not find a benefit in favor of CWI compared to other recovery interventions because the initial exercise bout was not sufficiently intense to elicit a significant 24-hour performance decrement.

However, when exercise was sufficiently intense to affect 24-48 hour sprint performance, CWI maintained repeat-sprint performance (a measure of speed-endurance) better than thermoneutral immersion (67), contrast water therapy (12,13,48), and passive recovery (12,13,48,67).

The effect of CWI on absolute speed is less clear. Of the two studies I found, one found no benefit to CWI over passive recovery on immediate and 24-hour recovery of 50-m dash time (68), while the other showed that CWI maintained 20-m speed better than compression or stretching over a 3-day simulated basketball tournament (66).

There’s not a lot of data on the effects of CWI on same-day recovery of sprint performance, but one study showed no significant differences in repeat-sprint performance between CWI and passive recovery immediately and up to two hours after intermittent sprint exercise in the heat (61). This ties in well with the research in sprint cycling that shows neutral—or even detrimental—effects on 30-second Wingate performance following CWI when sufficient re-warming does not occur (69,70). This makes sense: reduced muscle temperature will negatively affect muscle contractile properties (71), impair energy metabolism (72), and slow nerve conduction velocity (6,73), which collectively will negatively affect the force- and power-generating capabilities of muscle. Thus, caution should be taken when using CWI between or prior to exercise that requires a high-degree of muscular force (sprinting, jumping, etc.). Athletes should allow sufficient time to rewarm following CWI and make sure to include a dynamic warm-up before their next event, which has been shown to offset the negative effects of cold exposure on power production in the vertical jump (65).

When exercise is sufficiently intense, CWI may help restore short-term (<48 hour) sprint and jump performance. However, reduced muscular temperatures negatively affect the force-generation capacities of muscle. Thus, when using ice baths between two training sessions or events within the same day, it is important to allow the body sufficient time to re-warm and/or to include an extensive dynamic warm-up.

Endurance Performance

Given the number of endurance athletes that use ice baths to recover between workouts or events, it was somewhat surprising that very few studies looked at endurance performance following recovery periods of 24 hours or longer. Two of those studies showed that CWI improves endurance performance following a 24-hour recovery period (17,74), and two other studies demonstrated similar recovery benefits across 3-day (75) and 5-day (23) training blocks.

Paula_Radciffe_NYC_Marathon_2008_cropped

Most studies that looked at the effects of CWI on recovery from endurance exercise utilized recovery periods of <60 minutes between exercise bouts. But here’s the thing: When an athlete takes an ice bath between two bouts of exercise with a short (<1 hour) duration between bouts that ice bath creates a “precooling” effect for the second bout. Precooling is proposed to increase performance (particularly in hot conditions) by increasing heat storage capacity, reducing thermal strain, and decreasing perceived exertion by reducing core body temperature prior to exercise (76).* And, based on the abundance of data showing a benefit to precooling on endurance performance** (particularly in hot conditions), this is probably why we see such an immediate recovery of endurance performance following CWI (56,77-81). This effect diminishes with longer recovery periods (82), presumably as core body temperature returns to baseline.

*If you’re interested in learning more about precooling check out this (open-access!) systematic review as well as the results of two recent meta-analyses here and here.

**Just to reiterate: the beneficial effect of precooling likely does not hold true for short-duration, maximal efforts (see above).


Ice baths may be useful for recovering endurance performance, particularly when an athlete has to compete in multiple games or events in one day.

The Effect of Regular Cold Water Immersion on Long-Term Training Adaptations

Very few studies have looked at the effects of ice baths on long-term training adaptations. But, the evidence-to-date paints a pretty clear picture:

Strength Training

The evidence is pretty clear on this one: regular use of CWI impairs long-term gains in muscle mass and strength (83-86) at least in part by blunting the molecular response to resistance exercise (84). This seems to apply to both trained (84) and untrained (85,86) individuals.

Ice baths blunt the acute molecular response to resistance training and impair long-term gains in muscle mass and strength. Athletes should reconsider using ice baths after strength training, particularly in the off-season or preparatory period when the focus is on adaptation rather than performance.

Endurance Training

The evidence for the effects of CWI on adaptations to endurance training is not so clear. One study in competitive cyclists found that regular CWI neither enhanced nor interfered with cycling performance over a three-week training block (87). Furthermore, recent evidence suggests that regular CWI may actually enhance molecular adaptations to endurance training (88). However, it’s important to interpret these results with caution, as molecular adaptations do not always reflect functional outcomes and the study did not measure changes in performance. Of note, there is some evidence that regular CWI at very cold temperatures (5ᵒC) for very long durations (>30 minutes) may disrupt local vascular adaptations and attenuate improvements in VO2max to endurance training in untrained subjects (85).

There is no direct evidence to suggest that ice baths enhance nor interfere with endurance training adaptations. In trained athletes, ice baths can be used sparingly after endurance training, but regular use is not recommended, particularly during the preparatory period when the focus of training is on adaptation. Finally, ice baths of excessive duration or at extremely cold temperatures should be avoided.

Major Take-Aways

The evidence for cryotherapy is pretty mixed, but there are some patterns that seem to emerge from the literature:

• Cold water immersion and other forms of cryotherapy reduce exercise-induced inflammation.
• This reduction in inflammation may lead to reduced perceptions of fatigue and muscle soreness and increased perceptions of recovery which may benefit performance in the short-term.
• Importantly, the short-term recovery benefits of cryotherapy may depend considerably on the mode exercise (i.e. the type of stress), the physiological and perceptual qualities one is trying to restore, and (as I will discuss further in Part 2) the athlete’s belief in cryotherapy as a recovery modality.
• Meanwhile, a growing body of evidence indicates that inflammation is a necessary process for tissue regeneration and, as such, regular use of cold water immersion may impair long-term muscular and vascular adaptations to exercise.
• As such, cryotherapy should be used sparingly, particularly in the off-season when the goal is to maximize training adaptations.

In Part 2, I will address:

• whether baseball pitchers should ice their arms
• whether there an optimal cooling method, temperature, or duration
• whether cryotherapy is just one big fat placebo
• practical recommendations for athletes and coaches

Stay tuned for Part 2!

Note: the references for this entire article (including the upcoming part 2) will be posted as the first comment below.

About the Author

A native of the Great White North, Tavis Bruce (@TavisBruce) is no stranger to the effects of cold on athletic performance. He holds a Bachelor of Kinesiology and Health Science from the University of British Columbia, where he pitched for the Thunderbirds baseball team for three seasons. Tavis is currently the Director of Education for the Baseball Performance Group, where he integrates his passion for sports science with his love of baseball. He can be contacted at tavis.bru@gmail.com.
 

Sign-up Today for our FREE Newsletter and receive a four-part video series on how to deadlift!

Name
Email
Read more

Random Monday: Ice Baths for Recovery, Throwing Like a Girl, and Cute Puppies

It's been a while since I did a random thoughts blog; actually, it was October 6 - which is also known as the "Pre-Puppy Era" in the Cressey household.  As such, we have a lot to get to, so let's not waste any time. 1. It's been interesting to watch the Giants - a team without a true superstar (aside from Lincecum, who's only thrown one game) - take control of the World Series.  However, the most interesting part of the World Series for me was when former president George W. Bush came out and threw an absolutely effortless SEED to Nolan Ryan for the first pitch of Game 4.

It was a nice change of pace from what we often see with ceremonial first pitch appearances, as I wrote about previous in Why President Obama Throws Like a Girl.  You almost have to wonder if him busting out the cheddar during election week was a calculated attempt to win some Republican votes! Also, please refrain from political fighting in the comments section, kids; this is a bipartisan blog.  I will, however, encourage everyone to please get out and vote tomorrow, regardless of your candidates of choice. 2. I am still waiting for someone to convince me that cold water immersion post-training does anything for athletes other than cause serious shrinkage and irritate them.  It seems like it becomes more and more of "the rage" with each passing day, but I still haven't seen anything in the scientific literature supporting the efficacy of ice baths for recovery.  This piece came out just recently: Post exercise ice water immersion: Is it a form of active recovery?

We do not advocate cold water immersion for our athletes right now because I feel that there isn't any evidence to suggest that it has any favorable effects, and for such an annoying experience, you need to be getting considerable benefit in order to be using it regularly.  Moreover, I have seen a TON of pitchers who absolutely despise icing their arms after throwing outings, saying that it interferes with their arm bouncing back and gives them stiffness and difficulty warming up in the subsequent throwing outing.  There is going to need to be some definitive evidence supporting cold water immersion before I even consider experimenting with it in any of our athletes. That said, what has your experience been with cold water immersion and ice baths for recovery?  Please share your thoughts in the comments section. 3. Agents paying college football players to sign with them is a very corrupt and unacceptable practice, but the most scary part of this article for me is that three of the 23 players in question were DEAD before they hit 30.  Does anyone else find that a 13% mortality rate among this guy's potential clients kind of odd?  My guess would be that they weren't the most ethical guys in question and probably were involved in some sketchy stuff on the side, but it is still pretty wild that the author of this article just tosses it in there as a quick closing sentence like it's nothing worthy of consideration. 4. We are kicking on all cylinders with our professional baseball training crew.  As of right now, we have 44 guys from all over the country committed to getting after it this winter.  It's shaping up to be a fun time and great atmosphere - especially when you factor in our high school and college baseball guys. 5. Speaking of Cressey Performance, we've got Nick Tumminello coming in this morning to do an in-service for our staff.  Nick's a smart dude who teaches all over the world (he's headed to China right after us), and we're really lucky to have him.  In this dynamic industry, if you aren't getting better, you're falling behind - so be sure to seek out opportunities to watch industry leaders present whenever you can.  For more information on Nick, check out www.NickTumminello.com.  Here's a little taste of some of Nick's stuff:

6. Last, but not least, cute puppy pictures.

Asleep in my slipper:

Asleep in my wife's gym bag:

Sign-up Today for our FREE Newsletter:
Name
Email
Read more
Page
LEARN HOW TO DEADLIFT
  • Avoid the most common deadlifting mistakes
  • 9 - minute instructional video
  • 3 part follow up series