Home Posts tagged "Inverted W"

Timing Adjustments and Their Impact on the Pitching Delivery: A Case Study

Today's guest post comes from Matt Blake, the pitching coordinator at Cressey Sports Performance in Massachusetts. Matt is an integral part of the Elite Baseball Mentorships team.

I recently Tweeted out a picture of some mechanical changes a pitcher had made and it received a lot of responses. As such, I decided I would follow up with a little more depth and context to this particular picture to help shed some light on the thought process that goes into making mechanical adjustments. So, for starters, here’s the picture in question, with the left side being the original delivery and the right side being the revised version.

delivery1

Typically, when discussing pitching mechanics, I avoid using still shots, because they can be very misleading. In this particular case, there were some substantial changes that were made in this landing position, which I thought encapsulated a lot about the enhanced movement quality of the delivery as a whole, which we’ll unpack in further detail here.

For those familiar with the pitching delivery, the first thing that should jump out at you is the extremely late arm action in the initial delivery. This could be classified as an “inverted arm action” at landing, where in this case, the elbow isn’t necessarily hyper-abducted (elevated) above the shoulder, but the hand is definitely below the elbow. In a Cliff's Notes version, this positioning is generally regarded as increasing stress on the shoulder and elbow. This is in part due to the orientation of the humeral head in the socket at landing, as it’s in a position of excessive internal rotation and pinned into the front of the socket. As a result, we’re not in an optimal position to get the rotator cuff to function to center the head for a clean ball in socket rotation.

This is coupled with the fact that we’re adding more torque to the joint since we have more range of motion involved in getting the hand to full lay-back before accelerating to release. That being said, there are plenty of pitchers who throw very hard and have successful big league careers pitching with an inverted pattern, and the reason they throw so hard may very well be due to their inverted pattern, so you have to constantly weigh the risk/reward of making mechanical adjustments for pitchers.

As an example, Billy Wagner had an inverted pattern and multiple injuries, but was hitting 100mph before it was industry standard to hit 100mph - and he accumulated 422 saves in a successful big league career.

wagner1024px-Billy_Wagner_on_September_15,_2009

When weighing this potential risk/reward, some of the questions might include:

  • Where is this pitcher currently in the developmental process?
  • What type of stress does he currently report during or after throwing?
  • What can we gain by making adjustments?
  • What do we have to lose by adjusting this current delivery?

These are important questions to consider, because you’re obviously not going to take a big leaguer at the tail end of his career, and adjust what has got him to that point. Conversely, you might adjust a 15yr old high school pitcher, who throws hard, but has erratic command and reports a high level of stress after he’s done throwing.

In this particular case, we had a sophomore in college, who had a track record of success in high school, and was looking to establish his role in a very competitive program with a strong history of winning. His contributions as a freshman were limited in part due to command issues and his velocity would be erratic going anywhere from 82-90mph on any given day.

With these considerations in mind, it became apparent in looking at the the delivery in its current state, that these mechanics might be a limiting factor in commanding the ball at a competitive level, as well as sustaining his velocity on a consistent basis. On the flip side, though, if we reduce the inversion in his arm action, we may lose a mph or two of velocity initially, as we learn to “re-tension” the delivery and create force in a different manner. In order to fully comprehend these issues, let’s take a look at this delivery in full:

As I stated in the video, the crazy thing about this delivery is that for how extremely late that arm action looks in that still shot, it’s really a misrepresentation for how much I like the feel of this delivery as a whole. There’s a lot of quality movement that’s “loose” in nature, and this athlete has a good feel for creating “extension” in the throw, so we really don’t have to adjust the integrity of his movements, but more the timing associated with some of the actions, and at the crux of it, the athlete’s mindset for creating leverage in his throw.

If you look at where this delivery starts to break down, it’s in the excessive “counter-rotation” of his shoulders that creates too much length in the throwing arm and that couples with an exaggerated extension of the back leg into landing.

dlivery2

As a result, the hand can’t catch up and “get on top of the ball” at landing and our pressure into the ground ends up being poor. This combines to create an issue for the stabilization pattern as a whole now, because the front leg can’t brace to create a fixed point of rotation to anchor the throw, as it has to allow for the torso to translate forward in an effort to create time for the hand to get into position behind the ball. So, as you can see, by the front knee ending up working into a more flexed position, we’re diffusing the ground force reaction we’re trying to convert into rotational power, and the pelvis loses its leverage on that front hip, flattening out our rotation. When this happens, you’ll notice that the path of the hand is actually diverted wide instead of keeping an efficient driveline through the target. Without a firm landing position that allows us to accept force properly, and keep the rhythm of our sequencing intact, our command and velocity will continue to be erratic in nature.

delivery3

Once we identified these issues, we had to rule out that there wasn’t a mobility or stability issue that was limiting our ability to move through more functional positions. In this particular case, mobility definitely wasn’t the issue, and even though the stabilization pattern was currently poor, the athlete did have the ability to stabilize. It really just came down to his awareness for what he was trying to accomplish. So, once we came to agreement that these were things that could be fixed and would be beneficial to his development in the long run, we had to start re-organizing the focus of his repetitions.

Anytime you’re making changes, it’s essential to understand root causes and not just symptoms. For me, the inverted arm action was a symptom of a misdirected focus in the delivery. We needed to make the focus less on length and extension in the throw and more on strength in the landing and properly sequencing his rotations through the chain. By creating a stronger stride pattern and tying the timing of the arm path into the lower half sequencing, we would have a more connected and repeatable delivery that had a more efficient stabilization pattern. Let’s take a look at what shook out over the next seven weeks and then we’ll discuss some of the altered components.

As discussed in the video, the first thing that should stand out in the revised delivery is the compactness of the arm action, and from there, the angle of the ball flight out of his hand. And, to be honest, I could run through every drill that we did to get him to this point, but I don’t know if it’s really the drills themselves that are important. I think we could have accomplished this in a multitude of ways, as long as we kept the focus on cueing him to be “strong into the floor.”

deliver4

Now, that being said, we definitely used versions of the “stride drill” to coordinate the rhythm of the back-hip rotation and arm action, and we did our share of step-behind shuffles to speed up his timing and learn to accept force properly upon landing, but if the focus on trying to create force into the ground and working from “top-to-bottom” on the baseball wasn’t in place, I don’t think either of those drills would have mattered.

Changing his focus and “pre-throw vision” for what his ball flight should look like helped him organize his body into this revised delivery. By placing the importance on being “strong into the floor”, it didn’t allow him to put himself into these overly extended positions, whether it be the lower half or the arm action, as he came to understand these weren’t “strong” positions. Ultimately, understanding the importance of landing in a position that allowed him to accept the force and transfer it up the chain was crucial in this process.

delivery5

At the end of the day, the most important part of making any type of delivery change is getting “buy-in” from the athlete himself. It doesn’t matter what I think a delivery should look like unless the athlete understands and accepts why it’s important for him to make these changes, because ultimately he’s the one who has to throw the baseball.

In this particular case, we had a college pitcher who is on the cusp of turning himself into an impact pitcher in a competitive college program. If getting himself into more efficient positions in his delivery allows him to command the baseball more consistently, and he can reduce the erratic nature of his velocity, he’ll give himself a real chance to be a reliable college performer and we can begin to entertain the possibility of becoming a pro prospect.

All in all, I’m really proud of the work this athlete put in over the summer and I think these rapid changes speak volumes about the level of commitment he has to his development, as changes of this magnitude aren’t common in this time frame and they certainly don’t happen by accident. Needless to say, there’s still a lot of work to be done to “own” this remodeled delivery. It needs to become second nature and highly repeatable in order for this athlete to be able shift into a narrow-minded focus on just competing in the strike zone, but I’m certainly excited to see where his continued effort leads him.

For more pitching discussion, you can follow Matt on Twitter.

Looking for more video analysis and training insights like this? I'd encourage you to sign up for one of our upcoming Elite Baseball Mentorships. We have an upper extremity course in November, and you won't find a more intensive baseball educational experience.

Sign-up Today for our FREE Baseball Newsletter and Receive Instant Access to a 47-minute Presentation from Eric Cressey on Individualizing the Management of Overhead Athletes!

Name
Email
Read more

Should Pitching Coaches Understand Research Methods and Functional Anatomy?

Quite some time ago, I met a pitching coach who made a bold statement to me:

"Most Major League pitchers have terrible mechanics."

I don't know if he meant that they were mechanics that could lead to injuries, or simply mechanics that would interfere with control and velocity development, but either way, I shrugged it off.  Why?

Their mechanics are so terrible that they're in the top 0.0001% of people on the planet who play their sport.  And, they're paid extremely well to be terrible, I suppose.

Kidding aside, this comment got me to thinking about something that's been "festering" for years now, and I wanted to run it by all of you today to get your impressions on it.  In other words, this post won't be about me ranting and raving about how things should be, but rather me starting a dialogue on one potential way to get the baseball development industry to where it needs to be, as it clearly isn't there yet (as evidenced by the fact that more pitchers are getting hurt nowadays than ever before).

The way I see it, mechanics are typically labeled as "terrible" when a pitcher has:

1. Trouble throwing strikes

2. Pitching velocity considerably below what one would expect, given that pitcher's athleticism

3. Pain when throwing

4. Mechanical issues that theoretically will predispose him to injury 

In the first three cases, anyone can really make these observations.  You don't need to be trained in anything to watch the walk totals pile up, read a radar gun, or listen when a pitcher says, "It hurts."  Moreover, these issues are easier to coach because they are very measurable; pitchers cut down on their walks, throw harder, and stop having pain.

Issue #4 is the conundrum that has lead to thousands of pissing matches among pitching coaches.  When a pitcher gets hurt, everyone becomes an armchair quarterback.  The two biggest examples that come to mind are Mark Prior and Stephen Strasburg.

Prior was supposed to be one of the best of all-time before shoulder surgeries derailed his career.  After the fact, everyone was quick to pin all the issues on his mechanics.  What nobody has ever brought to light is that over the course of nine years, his injuries looked like the following (via Wikipedia):

1. Hamstrings strain (out for 2002 season)
2. Shoulder injury (on-field collision - missed three starts in 2003)
3. Achilles injury (missed two months in 2004)
4. Elbow strain (missed 15 days in 2004)
5. Elbow injury (missed one month in 2005 after being hit by line drive)
6. Rotator cuff strain (missed three months in 2006)
7. Oblique strain (missed two starts in 2006)
8. Rotator cuff strain (ended 2006 season on disabled list)
9. Shoulder surgery (missed entire 2007 season, and first half of 2008)
10. Shoulder capsule tear (out for season after May 2008)
11. Groin injury (missed last two months of 2011 season)

By my count, that is eleven injuries - but four of them were non-arm-related.  And, two of them (both early in his career) were contact injuries.  Who is to say that he isn't just a guy with a tendency toward degenerative changes on a systemic level?  How do we know one of the previous injuries didn't contribute to his arm issues later on?  How do we know what he did for preventative arm care, rehabilitation, throwing, and strength and conditioning programs? We don't have his medical records from earlier years to know if there were predisposing factors in place, either.  I could go on and on.

The issue is that our sample size is one (Mark Prior) because you'll never see this exact collection of issues in any other player again.  It's impossible to separate out all these factors because all issues are unique.  And, it's one reason why you'll never see me sitting in the peanut gallery criticizing some teams for having injured players; we don't have sufficient information to know exactly why a player got hurt - and chances are, the medical staff on those teams don't even have all the information they'd like to have, either.

Strasburg has been labeled the best prospect of all-time by many, and rightfully so; his stuff is filthy and he's had the success to back it up.  Of course, the second he had Tommy John surgery, all the mechanics nazis came out of their caves and started berating the entire Washington Nationals organization for not fixing the issue (an Inverted W) proactively to try to prevent the injury.  Everybody is Johnny Brassballs on the internet.

To that end, I'll just propose the following questions:

1. Did Strasburg not do just fine with respect to issues 1-3 in my list above?

2. Would you want to be the one to screw with the best prospect of all-time and potentially ruin exactly what makes him effective?

3. Do we really know what the health of his elbow was when the Nationals drafted him?

4. Do we know what his arm care, throwing, and strength and conditioning programs were like before and after being drafted?

There are simply too many questions one can ask with any injury, and simply calling mechanics the only contributing factor does a complex issue a disservice - especially since young athletes are growing up with more and more physical dysfunction even before they have mastered their "mature" mechanics.

The Inverted W theory is incredibly sound; Chris O'Leary did a tremendous job of making his case - and we certainly work to coach throwers out of this flaw - but two undeniable facts remain.  First, a lot of guys still throw with the Inverted W and don't have significant arm issues (or any whatsoever).  They may have adequate mobility and stability in the right places (more on this below) to get by, or perhaps they have just managed their pitch counts and innings appropriately to avoid reaching threshold.  I suspect that you might also find that many of these throwers can make up for this "presumed fault" with a quick arm combined with a little extra congenital ligamentous laxity, or subtle tinkering with some other component of their timing.

Second, a lot of guys who don't have an Inverted W still wind up with elbow or shoulder injuries. Good research studies bring issues like these to light, and nobody has really gotten a crew of inverted W guys and non-inverted W guys together to follow injury rates over an extended period of time while accounting for variables such as training programs, pitch counts, and pitch selection (e.g., sliders vs. curveballs). We don't know if some of these other factors are actually more problematic than the mechanics themselves, as it's impossible to control all these factors simultaneously in a research format.

As such, here we have my first set of questions:

Don't you think that pitching coaches need to make a dedicated effort to understand research methods so that they can truly appreciate the multifactorial nature of injuries?  And, more importantly, wouldn't learning to read research help them to understand which mechanical issues are the true problem?  

The Inverted W is certainly an issue, but there are many more to keep in mind. Just my opinion: I think the baseball industry would be much better off if pitching coaches read a lot more research.

Now, let's move on to my second question.  First, though, I want to return to the Inverted W example again. I have not met more than a few pitching coaches who can explain exactly what structures are affected by this mechanical flaw because they don't understand what functionally is taking place at the shoulder and elbow.  They don't understand that excessive glenohumeral (shoulder) horizontal abduction, extension, and external rotation can all lead to anterior glide of the humerus, creating more anterior instability and leading to injuries to the anterior glenohumeral ligaments and labrum.  Meanwhile, the biceps tendon picks up the slack as a crucial anterior stabilizer.  They also don't appreciate how these issues are exacerbated by poor rotator cuff function and faulty scapular stabilization patterns.  And, they don't appreciate that these issues are commonly present even in throwers who don't demonstrate an Inverted W pattern.

At the elbow, they also can't explain why, specifically, the Inverted W can lead to problems. They don't understand that the timing issue created by the "deep" set-up leads to greater valgus stress at lay-back because the arm lags.  They can't explain why some players have medial issues (UCL injuries, ulnar nerve irritation, flexor/pronator strains, and medial epicondyle stress fractures) while other players have lateral issues (little league elbow, osteochondritis dissecans of radial capitellum) from the same mechanical flaws.  They can't explain why a slider thrown from an Inverted W position would be more harmful than a curveball.

I can explain it to you - and I can explain it to my athletes so that they understand, too. I've also met a lot of medical professionals who can clearly outline how and why these structures are injured, but we aren't the ones coaching the pitchers on the mounds.  The pitching coaches are the ones in those trenches.

To that end, I propose my second set of questions:

Don't you think pitching coaches ought to make an effort to learn functional anatomy in order to understand not just what gets injured, but how those injuries occur?  Wouldn't it give them a more thorough understanding of how to manage their pitchers, from mechanical tinkering, to pitch selection, to throwing volume?  And, wouldn't it give them a more valid perspective from which to contribute to pitchers' arm care programs in conjunction with rehabilitation professionals and strength and conditioning coaches? 

The problem with just saying "his mechanics suck" is that it amounts to applying a theory to a sample size of one.  That's not good research.  Additionally, this assertion is almost always taking place without a fundamental understanding of that pitcher's functional anatomy.  It amounts to coaching blind.

To reiterate, this was not a post intended to belittle anyone, but rather to bring to light two areas in which motivated pitching coaches could study extensively in order to really separate themselves from the pack.  Additionally, I believe wholeheartedly in what Chris O'Leary put forth with his Inverted W writings; I just used it as one example of a mechanical flaw that must be considered as part of a comprehensive approach to managing pitchers.

With that said, I'd love to hear your opinions on these two sets of questions in the comments section below. Thanks in advance for your contributions.

Sign-up Today for our FREE Baseball Newsletter and Receive Instant Access to a 47-minute Presentation from Eric Cressey on Individualizing the Management of Overhead Athletes!

Name
Email
Read more
Page
LEARN HOW TO DEADLIFT
  • Avoid the most common deadlifting mistakes
  • 9 - minute instructional video
  • 3 part follow up series