Home Posts tagged "Pitching Velocity" (Page 4)

Baseball Strength and Conditioning: What to Do With an Extra Day Between Pitching Starts

Q: I read your series, A New Model for Training Between Starts, and love the ideas you introduced.  Since eliminating distance running between outings, I've noticed a big difference in how I feel and how I pitch.  I did have one question about the weekly rotations you outlined in Part 2.  What happens if I have an extra day between starts due to erratic scheduling or just a rain out? A: This is a great question - and one I have received several times - so I'm glad I'm finally getting around to answering it here on the blog! I usually look for guys to do a "bridge" training session.  Basically, these sessions are all about leaving the gym feeling refreshed; you work, but not so hard that you're exhausted.

In the typical in-season baseball strength and conditioning program we use with professional pitchers on a five-day rotation, here's how we'd schedule it: Day 0: pitch Day 1: challenging lower body lift, push-up variation (light), horizontal pulling (light), cuff work Day 2: movement training only Day 3: Single-leg work, challenging upper body lift (less vertical pulling in-season), cuff work Day 4: low-intensity dynamic flexibility circuits only Day 5: next pitching outing However, if the next outing isn't until Day 6, we will integrate one of two options: The first option would be to simply split the Day 3 training session into two shorter sessions: one upper, one lower.  These sessions might only be 10-12 sets in all. Then, Day 5 would be the low-intensity dynamic flexibility circuits.

The second option would be to keep the strength training component as-is, but perform some medicine ball circuits on Day 4, then use Day 5 for the low-intensity dynamic flexibility circuits. Both options keep you training hard without interfering with the subsequent pitching outing.  Particularly in professional baseball, there are more days off early in the season, so it's important to be able to roll with the punches like this. At the college and high school levels, the 7-day rotation is usually implemented.  If a pitcher starts on Day 0, I like to see him strength training on Day 1, Day 3, and Day 5, with Day 5 being a lower-intensity lift (Days 2 and 4 are movement training, and Day 6 is low-intensity dynamic flexibility).  If there is an extra day on the end, we simply treat our Day 5 lift like we did the Day 3 option in the 5-day template from above; it can either be split into upper and lower body sessions, or we can do it as-is, and add medicine ball circuits on Day 6, taking Day 7 for dynamic flexibility before starting again on Day 8.

That said, as in my experience, guys rarely get that extra day in high school and college; they're more likely to have their starts pushed up.  In this case, we just drop the Day 5 lift. Getting training sessions in between starts is incredibly important, but that doesn't mean that one must be rigid in the scheduling of these sessions.  In fact, one must be very flexible in tinkering with that scheduling on a week-to-week basis to make sure that guys are getting in their lifts, but not at the expense of their performance on the mound. Hopefully this blog provided some strategies you can employ when weather or scheduling throws you a curveball! Sign-up Today for our FREE Baseball Newsletter and Receive a Copy of the Exact Stretches used by Cressey Performance Pitchers after they Throw!
Name
Email
Read more

Increasing Pitching Velocity: What Stride Length Means and How to Improve It – Part 2

In part 1 of this series, I discussed the fact that – all other factors held constant – increasing stride length will improve pitching velocity.  Unfortunately, when you simply tell a pitcher to stride further down the mound, there are usually some unfavorable mechanical consequences that actually hinder pitching velocity.  So, be sure to read that piece before continuing on here. That said, sometimes, physical limitations can make it difficult to acquire a longer stride.  To that end, I wanted to use this second installment to begin to outline the top five limiting factors for those looking to get down the mound and throw harder. 1. Hip Mobility If you’re going to really get down the mound, you need outstanding adductor length on both the lead and trailing legs.  That goes without saying.  While we outline several options on our Assess and Correct DVD set, the split-stance kneeling adductor mobilization is definitely my favorite, as it improves adductor length in both hip flexion and extension:

 Just as important, players need to stop “hanging out” in adduction in sitting and standing.  I wrote about this in a bit more detail in my What I Learned in 2010 article (point #3).  This is incredibly common in right-handed throwers, in particular.  If your resting hip posture looks like this, fix it!

We use a variety of drills from the Postural Restoration Institute to help address the issue, but suffice it to say that you’ll be swimming upstream unless you learn to stop standing/sitting like this! Additionally, you need adequate length of the trailing leg hip flexors – particularly rectus femoris – to ensure that you don’t cut off hip rotation prematurely.  I like the wall hip flexor mobilization for this purpose.  Keep in mind that we perform the exercises on both the front and trailing leg, as many pitchers will have substantial knee flexion deficit on the front leg secondary to the stress of landing/deceleration.

Third, you need adequate hip internal and external rotation on both sides.  Hip external rotation range-of-motion on the trailing leg is particularly important to allow force to be applied over a longer distance.  Additionally, hip internal rotation is key on the front side, as enables a thrower to utilize the lower half more efficiently in deceleration.  Those without adequate internal rotation on the front side often cut their arm paths short and miss high with pitches – and put much more stress on their arm because the deceleration “arc” is shorter. External rotation is best gained through glute activation drills (supine bridges, side-lying clams, x-band walks) in conjunction with simply externally rotating the femur during the split-stance kneeling adductor mobilization I featured earlier.  For internal rotation, I like a gentle knee-t0-knee stretch/mobs (assuming no medial knee issues) , and bowler squats as a follow-up to get comfortable with the pattern.

 Of course, all these mobility drills must be complemented by quality soft tissue work: foam rolling and, ideally, manual therapy with a qualified practitioner. So, as you can see, adequate hip mobility for optimizing pitching velocity must take place in a number of planes.  Additionally, you need to remember that mobility is always influenced by musculo-tendinous. capsular, ligamentous, and osseous (bony) restrictions, so no two pitchers will be the same in their needs.  And, some pitchers simply may not have the bone structures to get into certain positions that are easy for other pitchers to achieve. 2. Lower-Body Strength/Power You can’t discuss lower-body mobility without appreciating the interaction it has with lower-body strength and power.

You see, mobility is simply your ability to get into a certain position or posture.  Flexibility is simply the excursion through which a joint can move.   What’s the problem? Flexibility doesn’t take into account stability.  Just because you can get your joints to a certain position in a non-weight-bearing scenario doesn’t mean that you’ll be able to achieve that same position when you’re in a weight-bearing position, trying to throw 95mph as you move downhill.  So, I’ll put my point in big, bold letters:

Pitchers need strength to have mobility.

Truth be told, building lower body strength in throwers isn’t tough.  You use all the basics – single-leg work, deadlift variations, squat variations (when appropriate), sled work, pull-throughs, glute-ham raise, hip thrusts, glute bridges, etc. – but just work to make sure that they are safe for throwers (e.g., use the front squat grip instead of the back squat grip).

Strength isn’t just a foundation for mobility, though; it’s also a foundation for power.  You can’t apply force quickly if you don’t have force!  So, once players have an adequate foundation of strength, they can benefit more from rotational medicine ball exercises and plyos in the frontal/transverse planes to learn to better apply force outside the sagittal plane. Make no mistake about it; having adequate strength/power to push off and rotate aggressively – not to mention decelerate the body on the front leg – is essential to outstanding pitching velocity. I’ll be back soon with Part 3 of this series.  In the meantime, if you’re looking for more hip mobility ideas for baseball players, check out Assess and Correct: Breaking Barriers to Unlock Performance.

Sign-up Today for our FREE Baseball Newsletter and Receive a Copy of the Exact Stretches used by Cressey Performance Pitchers after they Throw!
Name
Email
Read more

Increasing Pitching Velocity: What Stride Length Means and How to Improve It – Part 1

Ask almost any pitcher, and he'd tell you that he'd love to increase his stride length on the mound in hopes of increasing pitching velocity.  And, this is certainly an association that has been verified by both anecdotal and research evidence for years.  Look back to the best pitchers of former generations, and they figured this out even without the benefit of radar guns.

On the anecdotal side of things, hitters often comment on how pitches "get on them faster" with a guy who strides further down the mound.  This is a no brainer: a pitcher who releases the ball closer to the plate has a competitive advantage.  That's perceived pitching velocity.  However, what about actual velocity - meaning what the radar gun says? The truth is that it's somewhat tricky to prove specifically that a longer stride directly equates to better actual velocity, as it really depends on how the pitcher gets to that point.  You see, a pitcher can effectively delay his weight shift to create better "separation;" in fact, keeping the head behind the hips longer correlates highly with pitching velocity.  This separation is the name of the game - and he'd throw harder.

Or, that same pitcher could simply jump out - letting his body weight leak forward prematurely - and completely rob himself of separation and, in turn, velocity.  So, that's the first asterisk to keep in mind: it's not just where you stride, but also how you stride there. Additionally, in that second scenario, this modification may cause a pitcher to shift his weight forward excessively and wind up landing too much on his toes.  While the point on the foot at which the weight should be centered is certainly a point of debate among pitching coaches, it's safe to say that they all agree that you shouldn't be tip-toeing down the mound! Lastly, even if the weight shift is delayed perfectly, a pitcher still has to time up the rest of his delivery - when the ball comes out of the glove, how high the leg kick is, etc - to match up with it in "slightly" new mechanics.  These adjustments can take time, so the velocity improvements with a long stride may not come right away because other factors are influenced. Of course, keep in mind that not every hard thrower has a huge stride.  Justin Verlander doesn't get too far down the mound, but he's still done okay for himself!  Verlander seems to make up the difference with a ridiculously quick arm, great downward plane at ball release, and outstanding hip rotation power.  There's no sense screwing with someone who is a reigning Cy Young and MVP - and has two career no-hitters under his belt.  However, YOU have to find what works best for YOU.

So, without even getting to my list, you can say that mechanical proficiency is the #1 factor that influences whether a long stride will improve your pitching velocity.  Dial in what needs to be dialed in, and it could work wonders for you - if your body is prepared.

To that end, in part 2 of this series, I'll outline five physical factors that will help you improve your stride length and increase pitching velocity.

Interested in learning more about the throwing shoulder? Check out Optimal Shoulder Performance: From Rehabilitation to High Performance!

Sign-up Today for our FREE Baseball Newsletter and Receive a Copy of the Exact Stretches used by Cressey Performance Pitchers after they Throw!
Name
Email
Read more
Page 1 2 3 4
LEARN HOW TO DEADLIFT
  • Avoid the most common deadlifting mistakes
  • 9 - minute instructional video
  • 3 part follow up series