Home Posts tagged "Ulnar Collateral Ligament" (Page 3)

Ulnar Collateral Ligament Injuries in Quarterbacks vs. Pitchers

Here's an interesting study on the incidence of ulnar collateral ligament (UCL) injuries in professional football quarterbacks.  With only ten reported cases between 1994 and 2008, it's obviously (and not surprisingly) much lower than the rates we see in professional baseball players.  This is right in line with what I discussed in Weighted Baseballs: Safe and Effective or Stupid and Dangerous?

Bengals Seahawks Football However, what is very interesting to me is that 9/10 cases were treated non-operatively; in other words, Tommy John surgery is much less prescribed in football quarterbacks than baseball pitchers - meaning that the quarterbacks respond better to conservative treatment. What's up with that?  They are the same injuries - and presumably the same rehabilitation programs. In my eyes, it's due to the sheer nature of the stress we see in a baseball pitch in comparison to a football throw.  As a quarterback, you can probably "get by" with a slightly insufficient UCL if you have adequate muscular strength, flexibility, and tissue quality.  While this is still the case in some baseball pitchers, the stresses on the passive structure (UCL) are still markedly higher on each throw, meaning that your chances of getting by conservatively are probably slightly poorer.

elbow

I'm sure that the nature of the sporting year plays into this as well.  Football quarterbacks never attempt to throw year-round, so there isn't a rush to return to throwing.  There are, however, a lot of stupid baseball pitchers who think that they can pitch year-round, so kids often "jump the gun" on their throwing programs and make things worse before they can heal completely. That said, we've still worked with a lot of pitchers who have been able to come back and throw completely pain-free after being diagnosed with a partial UCL tear and undergoing conservative treatment (physical therapy).  It's an individual thing. Related Posts Understanding Elbow Pain - Part 3: Throwing Injuries Understanding Elbow Pain - Part 4: Protecting Pitchers Please enter your email below to sign up for our FREE newsletter.
Name
Email
Read more

Understanding Elbow Pain – Part 2: Pathology

In case you missed Part 1 of this series (Functional Anatomy), you can check it out HERE.

Elbow issues can be really tricky at times from a diagnostic standpoint. Someone with medial elbow pain could have pronator and/or flexor (a.k.a. Golfer’s Elbow) soft tissue issues, ulnar nerve irritation or hypermobility, ulnar collateral ligament issues, or a stress fracture of the medial epicondyle – or a combination of two or more of these factors. All of these potential issues are “condensed” into an area that might be a whopping one square inch in size. Throw lateral elbow pain (commonly extensor overuse conditions - a.k.a. "Tennis Elbow" - and bony compression issues) and posterior (underside) pain in the mix, and you’ve got a lot of other stuff to confound things.

lateralepicondyle1

To make matters more complex, it’s not an easy diagnosis. The only way to recognize soft tissue restrictions is to get in there and feel around – and even when something is detected, it takes a skilled clinician with excellent palpation skills to determine just what is “balled up” and what nerves it may affect (especially if there is referred pain).

In these situations, I’ll stick with the terms “soft tissue dysfunction” and “tendinopathy” or “tendinosis” to stay away from the diffuse and largely incorrect assumption of “elbow tendinitis.” We’re all used to hearing “Tennis Elbow” (lateral) and “Golfer’s Elbow” (medial), and to be honest, I’d actually say that these are better terms than “epicondylitis,” as issues are more degenerative (“-osis”) than inflammatory (“-itis”).

golfers

Ulnar nerve pain patterns can present at or below the elbow (pinky and ring finger tingling/numbness are common findings), and may originate as far up as the neck (e.g., thoracic outlet syndrome, brachial plexus abnormalities, rheumatologic issues, among others) and can be extremely challenging to diagnosis. A doctor may use x-rays to determine if there is some osseous contribution to nerve impingement or a MRI to check on the presence of something other than bone (such as a cyst) as the cause of the compression. Nerve conduction tests may be ordered. Manual repositioning to attempt to elicit symptoms can also give clues as to whether (and where) the nerve may be “stuck” or whether it may be tracking out of course independent of soft tissue restrictions.

Childress reported that about 16% of the population – independent of gender, age, and athletic participation – has enough genetic laxity in the supporting ligaments at the elbow to allow for asymptomatic ulnar nerve “dislocation” over the medial epicondyle during elbow flexion. In the position of elbow flexion, the ulnar nerve is most exposed (and it’s why you get the “funny bone” pain when you whack your elbow when it’s bent, but not when it’s straight). Ulnar nerve transposition surgeries has been used in symptomatic individuals who have recurrent issues in this regard, and it consists of moving the ulnar nerve from its position behind the medial epicondyle to in front of it.

ulnarnerve

An ulnar collateral ligament (UCL) issue may seem simple to diagnosis via a combination of manual testing and follow-up diagnostic imaging (there are several options, none of which are perfect), but it can actually be difficult to “separate out” in a few different capacities.

First, because the UCL attaches on medial epicondyle (albeit posteriorly), an injury may be overlooked acutely because it can be perceived as soft tissue restrictions or injuries.  The affected structures would typically be several of the wrist flexors as they attach via the common flexor tendon, or the pronator teres.

Second, partial thickness tears of the UCL can be seen in pitchers who are completely asymptomatic, so it may be an incidental finding. Moreover, we have had several guys come our way with partial thickness UCL tears who have been able to rehab and return to full function without surgery. While the UCL may be partially torn and irritated, the pain may actually be coming to “threshold” because of muscular weakness, poor flexibility, or poor tissue quality.

Medial epicondyle stress fractures can be easily diagnosed with x-rays, but outside of a younger population, they can definitely be overlooked. For instance, I had a pro baseball player – at the age of 23 – sent to us for training by his agent last year as he waiting for a medial epicondyle fracture to heal.

stressfracture

While these are the “big players” on the injury front – particularly in a throwing population – you can also see a number of other conditions, including soft tissue tears (flexor tendons, in particular), loose bodies (particularly posteriorly, where bone chips can come off the olecranon process), and calcification of ligaments. So, long story short, diagnosis can be a pain in the butt – and usually it’s a combination of multiple factors.  At a presentation last weekend, Dr. Lance Oh commented on how 47% of elbow pain cases present with subluxating medial triceps ("snapping elbow"), but this is rarely an issue by itself.

That’s one important note. However, there is a much more important note – and that is that many rehabilitation programs are outrageously flawed in that they only focus on strengthening and stretching the muscles acting at the elbow and wrist.

As I’ll outline in Part 3 of this series, a ton of the elbow issues we see in throwers occur secondary to issues at the glenohumeral and scapulothoracic joints. And, more significantly, not providing soft tissue work in these regions grossly ignores the unique anatomical structure of the elbow and forearm and its impact on tendon quality. If you’ve got elbow issues, make sure you’ve got someone doing good soft tissue work on you. Just to give you a little visual of what I’m thinking, I got a video of Nathaniel (Nate) Tiplady, D.C. (a great manual therapist who works out of Cressey Performance a few days a week) performing some Graston Technique® followed by Active Release ® on my forearms.  Here's the former; take note of the sound of his work on the tissues; the instruments actually give the practitioner tactile (and even audible) feedback in areas of significant restrictions.  You'll see that it is particularly valuable for covering larger surface areas (in this case, the flexors of the anteromedial aspect of the forearm):

As for the ART, you'll see that it's more focal in nature, and involves taking the tissue in question from shortened to lengthened with direct pressure.

As you can probably tell (even without seeing me sweat or hearing me curse), it doesn’t feel great while he’s doing it – but the area feels like a million bucks when he’s done.

While there is no substitute for having a qualified manual therapist work on you, using The Stick on one’s upper and lower arms can be pretty helpful.

More on that in Part 3…

Please enter your email below to sign up for our FREE newsletter.
Name
Email
Read more

Understanding Elbow Pain – Part 1: Functional Anatomy

Today's piece kicks off a multi-part series focusing specifically on the elbow.  I'm going to start off this collection by talking about the anatomy of the elbow joint, but in appreciation of the fact that a lot of you are probably not as geeky as I am, I'll give you the Cliff's Notes version first: The elbow is the most "claustrophobic" joint in the body; there is a lot of stuff crammed into very little space.  This madness is governed not just by the joint itself, but (like we know with all joints) by the needs of the forearm/wrist and what goes on at the shoulder and neck. Even for the geeks out there, in the interest of keeping this thing "on schedule," I'm just going to focus on your pertinent information.  I would highly recommend The Athlete's Elbow to those of you interested in learning more; it's insanely detailed. Your big players on the osseous (bone) front are going to be the humerus, ulna, and radius.  At the humerus, in the context of this discussion, all you really just need to pay attention to are the medial and lateral epicondyles, as they are crucial attachment points for both tendons and ligaments (as well as sites of stress fractures in younger athletes).

elbow_labelled

Posteriorly, you'll see that olecranon process of the ulna sits right in the olecranon fossa of the humerus.  This is a pretty significant region, as it gives the elbow its "hinge" properties and prevents elbow hyperextension.  Fractures of the olecranon can occur and leave loose bodies in the joint that will prevent full elbow extension.  And, not to be overlooked is the attachment site of the triceps (via a common tendon) and anconeus on the olecranon process.

elbowxray

The "elbow" may just be a hinge to the casual observer, but in my eyes, it's important to distinguish among the humeroulnar joint (described above) and the humeroradial (pivot) and proximal radioulnar joints - which give rise to pronation and supination.

0199210896pivot-joint1

Likewise, the wrist (and the fingers, for that matter) is directly impacted in flexion/extension, radial deviation/ulnar deviation, and pronation/supination by muscles that actually attach as far "north" as the humerus.  Muscles aren't just working in one plane of motion; they're working for or against multiple motions in multiple planes.

In all, you have 16 muscles crossing the elbow.  For those counting at home, that's more than you'll find at another "hinge" joint, the knee, in spite of the fact that the knee is a much bigger joint mandating more stability.  More muscles equates to more tendons, and that's where things get interesting.

As any good manual therapist, and he'll tell you that soft tissue restrictions occur predominantly at: A.       Areas of increased friction between muscles/tendons B.       Areas where forces generated by a myofascial unit come together (termed "Zones of Convergence" by myofascial researcher Luigi Stecco): this is generally the muscle-tendon-bone "connection," as you don't typically see prominent restrictions in the mid-belly of a muscle. This is a double whammy for the muscles acting at the elbow.  In terms of A, you have many muscles in a small area.  Most folks overlook the importance of B, though: a lot of them share a common (or at least directly adjacent) attachment point.  The flexor carpi radialis, flexor carpi ulnaris, palmaris longus, and flexor digitorum superficialis all attach video the common flexor tendon on the medial epicondyle, with the pronator teres attaching just a tiny bit superiorly.  There's ball of crap #1.

medialepicondyle

Ball of crap #2 occurs at the lateral epicondyle, where you have the common extensor tendon, which is shared by extensor carpi radialis brevis, extensor carpi ulnaris, supinator, extensor digitorum, and extensor digiti minimi - with the extensor carpi radialis longus attaching just superiorly on the lateral supracondylar ridge.  Ball of crap #3 can be found posteriorly, where the three heads of the triceps converge to attach on the olecranon process via a common tendon, with the much smaller anconeus running just lateral to the olecranon process. You can see both balls of crap (double flusher?) coming together here:

lateralepicondyle

Ball of crap #4 is a bit more diffuse consisting of the attachments of biceps brachii (radial tuberosity), brachioradialis (radial/styloid process), and brachialis (coronoid process of ulna) on the anterior aspect of the forearm.

distalbiceps

This last graphic demonstrates that there are a few other factors to consider in this already jam-packed area.  You've got fascia condensing things further, and you've also got a blood supply and nerve innervations - most significantly, the ulnar, median, and radial nerves - passing through here. The median nerve, for instance, passes directly through the pronator teres muscle.

Oh, and you've also got ligaments mixed in - some of which are attaching on the very same regions that tendons are attaching.  The ulnar collateral ligament attaches on the medial epicondyle in close proximity to the flexors and pronator teres, for instance.  These ligaments are heavily reliant on soft tissue function to stay healthy.  As an example, flexor carpi ulnaris is going to be your biggest "protector" of the UCL during the throwing motion.

elbow

So what's the take-home message of this functional anatomy lesson?  Well, there are several.

1. Lots of stuck is packed in a very small area.

2. When things are stuck together, they form dense, fibrotic, nasty balls of crud.

3. These gunked up muscles/tendons can impact everything from nerve function to ligamentous integrity - or they can just give out in the form of a tear or tendinopathy.

4. Diagnosis can be tricky because all the potential issues take place in a small area, and may have very similar symptoms.  Different pathologies take place in different athletic populations, too.  We'll have more on this in Understanding Elbow Pain - Part 2: Pathology.

Related Posts

Why Do Some Guys Come Back to Pitch Better After Tommy John Surgery? Things I Learned from Smart People: Installment 2

shoulder-performance-dvdcover Click here to purchase the most comprehensive shoulder resource available today: Optimal Shoulder Performance - From Rehabilitation to High Performance. Sign-up Today for our FREE Baseball Newsletter and Receive a Copy of the Exact Stretches used by Cressey Performance Pitchers after they Throw!
Name
Email
Read more

Inefficency vs. Pathology

In Newsletter 95, I wrote about how pathologies often don’t become symptomatic until inefficiencies get to be too bad. Here is a perfect example of a guy who has basically learned how to work around a pathology to remain competitive at a high level. New Twist Keeps Dickey’s Career Afloat You can bet that he’s got a lot of efficiency working in his favor. Thanks, Paul Vajdic, for passing this along!
Read more
Page 1 2 3
LEARN HOW TO DEADLIFT
  • Avoid the most common deadlifting mistakes
  • 9 - minute instructional video
  • 3 part follow up series