Home Posts tagged "Weight Lifting for Baseball" (Page 6)

Oblique Strains and Rotational Power

On Monday night, Josh Hamilton put on an amazing show with 28 homeruns in the first round of the MLB Homerun Derby. While he went on to lose to Justin Morneau in the finals of the contest, Hamilton did smash four 500+ ft. shots - and stole the hearts of a lot of New York fans. It's an incredible story; Hamilton has bounced back from eight trips to rehabilitation for drugs and alcohol to get to where he is today.

Geek that I am, though, I spent much of the time focusing on the incredible hip rotation and power these guys display on every swing. According to previous research, the rotational position of the lead leg changes a ton from foot off to ball contact. After hitting a maximal external rotation of 28° during the foot off “coiling” that takes place, those hips go through some violent internal rotation as the front leg gets stiff to serve as a “block” over which crazy rotational velocities are applied.

How crazy are we talking? How about 714°/s at the hips? This research on minor leaguers also showed that stride length averaged 85cm - or roughly 380% of hip width. So, you need some pretty crazy abduction and internal rotation range-of-motion (ROM) to stay healthy. And, of course, you need some awesome deceleration strength – and plenty of ROM in which to apply it – to finish like this.

Meanwhile, players are dealing with a maximum shoulder and arm segment rotational velocities of 937°/s and 1160°/s, respectively. All of this happens within a matter of 0.57 seconds. Yes, about a half a second.

These numbers in themselves are pretty astounding – and probably rivaled only by the crazy stuff that pitchers encounter on each throw. All these athletes face comparable demands, though, in the sense that these motions take a tremendous timing to sequence optimally. In particular, in both the hitting and pitching motions, the hip segment begins counterclockwise (forward) movement before the shoulder segment (which is still in the cocking/coiling phase). Check out this photo of Tim Hudson (more on this later):

Many of you have probably heard about a “new” injury in major league baseball – oblique strains – which have left a lot of people looking for answers. In fact, the USA Today published a great article on this exact topic earlier this season. Guys like Hudson, Chris Young, Manny Ramirez, Albert Pujols, Chipper Jones and Carlos Beltran (among others) have dealt with this painful injury in recent years. You know the best line in this entire article? With respect to Hudson:

“After the 2005 season, he stopped doing core work and hasn't had a problem. Could that be the solution?”

I happen to agree with the mindset that some core work actually contributes to the dysfunction – and the answer (to me, at least) rests with where the injury is occurring: “always on the opposite side of their throwing arm and often with the muscle detaching from the 11th rib.” If I’m a right-handed pitcher (or hitter) and my left hip is already going into counter-clockwise movement as my upper body is still cocking/coiling in clockwise motion – both with some crazy rotational velocities – it makes sense that the area that is stretched the most is going to be affected if I’m lacking in ROM at the hips or thoracic spine.

I touched on the need for hip rotation ROM, but the thoracic spine component ties right into the “core work” issue. Think about it this way: if I do thousands of crunches and/or sit-ups over the course of my career – and the attachment points of the rectus abdominus (“abs”) are on the rib cage and pelvis – won’t I just be pulling that rib cage down with chronic shortening of the rectus, thus reducing my thoracic spine ROM in the process?

Go take another look at the picture of Tim Hudson above. If he lacks thoracic spine ROM, he’s either going to jack his lower back into lumbar hyperextension and rotation as he tries to “lay back” during the late cocking phase, or he’s just going to strain an oblique. It’s going to be even worse if he has poor hip mobility and poor rotary stability – or the ability to resist rotation where you don’t want it.

Now, I’m going to take another bold statement – but first some quick background information:

1. Approximately 50-55% of pitching velocity comes from the lower extremity.

2. Upper extremity EMG activity during the baseball swing is nothing compared to what goes on in the lower body. In fact, Shaffer et al. commented, “The relatively low level of activity in the four scapulohumeral muscles tested indicated that emphasis should be placed on the trunk and hip muscles for a batter's strengthening program.”

So, the legs are really important; that 714°/s at the hips has to come from somewhere. And, more importantly, it’s my firm belief that it has to stay within a reasonable range of the shoulder and arm segment rotational velocities of 937°/s and 1160°/s (respectively). So, what happens when we give a professional baseball player a foo-foo training program that does little to build or even maintain lower-body strength and power? And, what happens when we have that player run miles at a time to “build up leg strength?” How many marathoners do you know who throw 95mph and need those kind of rotational velocities or ranges of motion? Apparently, bigger contracts equate to weaker, tighter legs…

Meanwhile, guys receive elaborate throwing programs to condition their arms – and they obviously never miss an upper-body day (also known as a “beach workout"). However, the lower-body is never brought up to snuff – and it lags off even more in-season when lifting frequency is lower and guys do all sorts of running to “flush their muscles.” The end result is that the difference between 714°/s (hips) and 937°/s and 1160°/s (shoulders and arms) gets bigger and bigger. Guys also lose lead-leg hip internal rotation over the course of the season if they aren’t diligent with their hip mobility work.

So, in my opinion, here’s what we need to do avoid these issues:

1. Optimize hip mobility – particularly with respect to hip internal rotation and extension. It is also extremely important to realize the effect that poor ankle mobility has on hip mobility; you need to have both, so don’t just stretch your hip muscles and then walk around in giant high-tops with big heel-lifts all day.

2. Improve thoracic spine range of motion into extension and rotation.

3. Get rid of the conventional “ab training/core work” and any yoga or stretching positions that involve lumbar rotation or hyperextension and instead focus exclusively on optimizing rotary stability and the ability to isometrically resist lumbar hyperextension.

4. Get guys strong in the lower body, not just the upper body.

5. Don’t overlook the importance of reactive work both in the lower and upper-body. I’ve read estimates that approximately 25-30% of velocity comes from elastic energy. So, sprint, jump, and throw the medicine balls.

Sign-up Today for our FREE Baseball Newsletter and Receive a 47-Minute Presentation on Individualizing the Management of Overhead Athletes!

Name
Email

Read more

Pressing and the Overhead Athlete

Many of you are going to hate me for what I’m about to say. I don’t let my overhead throwing athletes overhead press or bench press with a straight bar. There. I said it. Call me all the names you’d like but ask yourself this: “Am I cursing Eric’s name because I think that the cost-to-benefit ratio of overhead pressing and straight bar bench pressing justifies their use, or is it because I feel naked without these options? I have to bench press. I can’t start an upper body day with any other exercise.” Continue Reading... Sign-up Today for our FREE Baseball Newsletter and Receive a Copy of the Exact Stretches used by Cressey Performance Pitchers after they Throw!
Name
Email
Read more

SB: 10 Plates + Tony Sled Push

Step 1: Train hard and eat big, putting on 16 pounds in ten weeks while adding four inches to your vertical jump. Step 2: Load ten plates on a sled. Step 3: Load a 210-pound Gentilcore on that sled. Step 4: Push!
Read more

Quick Reference: Screwy Shoulder

I get asked quite a bit about what I look for when I see a screwy shoulder. Here you go! 1. Scapular stability 2. Thoracic spine range of motion 3. Cervical spine function 4. Breathing patterns 5. Mobility of the opposite hip 6. Mobility of the opposite ankle 7. Overall soft tissue quality (especially posterior capsule) 8. Glenohumeral (ball-and-socket joint) range of motion 9. Rotator cuff strength Rotator cuff function is lower down on the ladder simply because the rotator cuff is reflexive and you don't have to worry about firing it in everyday life. Nobody actively tightens up infraspinatus to pick up a suitcase - and you can more easily compensate for a lack of rotator cuff function with added scapular stability (as evidenced by the number of people with internal impingement - a hypermobility problem - who can get by without surgery). The thing I absolutely love about the Inside-Out DVD from Mike Robertson and Bill Hartman is that it covers the overwhelming majority of these problems. If you have a shoulder problem or want to prevent one, it's a great DVD to have on your shelf. Eric Cressey
Read more

Posterior Capsule Tightness: Subscapularis Dysfunction

I saw you write somewhere recently that subscapularis dysfunction was generally associated with posterior capsule tightness? Is there a causal relationship?
The subscapularis, infraspinatus, and teres minor work together to depress the humeral head during dynamic shoulder activities. The subscapularis posteriorly pulls the humeral head in the joint (counteracts pectoralis major), while the other two anteriorly pull it (counteract posterior deltoid). So, they're antagonists and synergists at the same time. If subscapularis shuts down, infraspinatus and teres minor fire overtime as depressors - but you don't get subscapularis’ posterior humeral head pull. Tightness kicks in with the posterior capsule, and you can also get anterior humeral glide issues. This is a big no-no in overhead throwing, as they’ll look to the elbow to get range of motion – and that’s when you start to see ulnar collateral ligament ruptures, ulnar nerve compression, etc. Eric Cressey

shoulder-performance-dvdcover

Click here to purchase the most comprehensive shoulder resource available today: Optimal Shoulder Performance - From Rehabilitation to High Performance.
Read more
Page 1 4 5 6
LEARN HOW TO DEADLIFT
  • Avoid the most common deadlifting mistakes
  • 9 - minute instructional video
  • 3 part follow up series